
Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

MANUEL TREMMEL

MASTER THESIS

SERVER-SIDE SCRIPTING

IN THE SWEBLE ENGINE

Submitted on 24 July 2015

Supervisors:
Hannes Dohrn
Prof. Dr. Dirk Riehle, M.B.A.
Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, 24 July 2015

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, 24 July 2015

i

https://creativecommons.org/licenses/by/4.0/

Abstract

The Sweble Engine is a wiki software built around the powerful “wiki object
model” (WOM), which represents the full state of the wiki. This thesis adds
scripting support to Sweble so that scripts embedded in a wiki page, can ma-
nipulate the WOM and hence the state of the wiki. The focus of this thesis
is on embedding JavaScript as a programming language, but also other script-
ing languages can be used. Wiki events such as rendering, saving resources and
submitting forms trigger functions defined in the script. The result is a rapid pro-
totyping environment based on Wikitext and script languages which helps users
to create simple and well-factored Wiki applications. The implemented Sweble
scripting module allows for collaboratively developing script libraries inside the
Wiki environment that be can be included by end-users with little or no coding.

ii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Scope . 2
1.3 Research question . 3

2 Related work 5
2.1 Node.js . 5
2.2 Web Scripting Framework . 6
2.3 Wicket . 7
2.4 HTML, DOM and JavaScript . 8
2.5 XSLT . 8
2.6 PHP . 8

3 Background research 10
3.1 End-user development (EUD) . 10
3.2 Web programming languages and their problems 15

3.2.1 Weaknesses of templating languages 15
3.2.2 Security problems . 16

3.3 Scripting languages . 17
3.4 Rapid prototyping . 18
3.5 Scripting in Java . 19

4 Methods: Usage and API of the scripting module 21
4.1 Events of script invocations . 21
4.2 Script expressions . 22
4.3 Referencing external scripts and script resources 23

4.3.1 Script references . 23
4.3.2 External script nodes . 24
4.3.3 Script resources . 25

4.4 Evaluation time . 26
4.5 Execution model . 27
4.6 Forms and form elements for Sweble resources 27

iii

4.7 API . 29
4.7.1 onRender . 29
4.7.2 onSubmit . 29
4.7.3 onSave . 30
4.7.4 Event listeners . 30

4.8 Bindings and context available to scripts 31
4.8.1 Context of script expressions 31
4.8.2 Context of external scripts 31
4.8.3 Context for interactive scripting (”CLI”) 32

4.9 Simple syntax . 32
4.10 Script repositories . 33
4.11 Permissions . 34
4.12 End-user tools . 34

4.12.1 Interactive scripting . 35
4.12.2 Script logging . 36

4.13 Sweble module vs. scripting . 37

5 Comparative evaluation of the Sweble Scripting module with
PHP 39
5.1 Readability . 39
5.2 Ease-of-use . 40
5.3 Reusability . 40
5.4 Performance . 41
5.5 Caching . 42
5.6 Evolvability . 42
5.7 Debugging tools . 44
5.8 Security . 44
5.9 Versatility . 45
5.10 Direct comparison with PHP . 45

6 Design 46
6.1 Scripting module . 46
6.2 Events of script invocations . 46
6.3 ”String concatenation” vs. DOM/WOM manipulation 47
6.4 JavaScript as main scripting language for Sweble 49
6.5 Evaluation time . 50
6.6 Execution model . 51
6.7 Script logging . 51

7 Implementation 53
7.1 Sweble module . 53
7.2 Sweble Wiki . 53

7.2.1 Resources . 53

iv

7.2.2 Transformation and presentation of resources 54
7.2.3 Transformation of Wikitext to internal representations . . 54

7.3 Markup generation . 55
7.4 Forms and form elements . 55
7.5 ScriptResource . 56
7.6 Form submissions and markup . 58
7.7 Wicket dependencies . 58
7.8 Security . 58
7.9 Round-trip data (RTD) . 59
7.10 Context of scripts . 60
7.11 Embedding JavaScript in Java . 61

7.11.1 Script engine discovery . 61
7.11.2 JSR optimization . 61
7.11.3 Bindings . 62
7.11.4 ScriptContext . 63
7.11.5 JQuery . 63

7.12 Unit tests . 63
7.13 Alternative implementations . 65

8 Conclusion 66

9 Future work 68
Appendix A Script document API 73
Appendix B External and interactive scripts API 73
Appendix C External scripts API 75
Appendix D Shared document/context API 77

v

List of Figures

3.1 End-user programmers try to overcome lack of programming skills
(e.g. programming concepts and understanding) with possibly
wrong assumptions. “For surmountable barriers, the percent of
each type overcome with invalid assumptions, and the type of bar-
rier to which the assumptions led.” (cf. Ko, Myers, Aung et al.,
2004). 13

4.1 Screenshot of the interactive scripting page in the Sweble wiki
provided by the Sweble scripting module. 35

4.2 Screenshot of the script logging protocol page in the Sweble wiki
provided by the Sweble scripting module. 36

6.1 The script processing pipeline with the evaluation times “before”,
“intermediate” and “after”. 50

vi

List of Tables

4.1 Evaluation time and possibilities of scripts regarding WOM ma-
nipulation and/or returning values 25

4.2 Characteristics of elements introduced by the scripting module . . 31

vii

1 Introduction

1.1 Motivation

Wikis are collaborative content management systems. A well-known represent-
ative of a wiki system is MediaWiki, which is driving Wikipedia. Wikis are also
used in companies and for personal projects. Mediawiki Wikitext is a common
markup for Wiki systems, however, due to its evolution, it comes with numerous
problems. It has not been formally defined and it has not been designed as a
language which is easy to parse. To remedy this situation, the Sweble project
(cf. Dohrn and Riehle, 2011) defines a wiki object model (WOM) which can
represent all resources within a Wiki system. An example for such a resource is
an article resource written in Wikitext. Its wiki markup elements are accessible
via a standardized API which is currently available in Java only. The Sweble
parser transforms Wikitext into this WOM representation and is able to convert
it back without loss. WOM may also be used to transform any other type of
Wiki markup into the WOM representation by using a parser for that markup.
Using the WOM has several advantages. First, Wikitext has become increasingly
complex and thus adding new elements to the Wikitext markup language is not
straight-forward. Secondly, working with an abstract representation has not been
possible so far because Wikitext is practically defined by the Wikitext parser in
Mediawiki. With Sweble and the WOM representation of a Wiki article, an ab-
stract representation exists, which can be read and manipulated by a 3rd party
script or application. This is especially interesting to enable end-user program-
ming. End-user programming is not done exclusively by programmers with a
formal IT education, but also by users with different background. In fact, for
30% of all new jobs in the USA programming skills would help in solving daily
tasks (cf. Ko, Myers, Aung et al., 2004). Therefore, end-user programming is
useful in personal and professional environments.

The web and the web browser may be enriched with tools that allow them to
collect and annotate information to ease every-day work (cf. Cypher, Dontcheva,
Lau and Nichols, 2010). As part of the web, also wiki systems are ideal for
end-user programming. To assist users when customizing their wiki system and

1

adding dynamic functionality, it is the task of the wiki environment to provide
adequate tools to intuitively write reusable and maintainable code. Even more
importantly, this scripting module allows more experienced developers to col-
laboratively develop tools that can be embedded by end-users with little or no
coding. Therefore, users do not depend on top-down tools developed or added
by the administrator. Therefore, decentralized tool development is made possible
through the script library approach. The idea of this work is to provide these
tools through a Wiki system, which end-users to customize, automate and cre-
ate mashups, which constitute typical end-user requirements (cf. Cypher et al.,
2010). A more detailed discussion of end-user programming will be discussed in
detail in section 3.1.

To provide users with facilities to improve their effectivity in their daily use of
wiki systems, a scripting module for the Sweble Wiki has been created as part
of this thesis. Scripting also increases the number of possible applications of a
Wiki. With scripting support, small applications can be written inside the Wiki.
For example, it is possible to add or manage information more conveniently by
using custom forms provided by the Sweble scripting module.

1.2 Scope

The scope of this work is to provide server-side scripting and not to provide
a fully-fledged web application framework, which rivals other script languages
found in the web such as PHP. This is also not supported by the Sweble Wiki
framework (yet). The goal is to enable users to write simple applications within
Wiki resources. The decision was not to embed the scripting functionality as a
templating language, which is an approach found in many web programming lan-
guages such as PHP. Instead, the scripting language operates with WOM objects,
which is a representation of the Wiki and its resources in the form of a tree. This
requires all scripts to perform manipulations on the WOM tree in order to change
the resource displayed to the user. This change may be temporary or (in case of
a form submission), also permanent by committing a writable transaction with
the changes. Scripting expressions are an exception to this rule, as their result
is displayed when viewing the resource. In other words, to implement simple
dynamic functionality, one is not required to use and be aware of the WOM.

Scripting is not intended for more sophisticated applications, where a Sweble
Wiki module would be a better fit. The Sweble scripting module is intended only
for small applications of little complexity. Using scripting is especially helpful
when script applications are created by privileged users. In this case additional
functionality can be implemented or get delegated without requiring the admin-
istrator to add another module. A detailed discussion when to use the scripting

2

module or when to create a Sweble module can be found in section 4.13.

1.3 Research question

The main research question that guides this work is how to design concepts for
end-user suitable programming languages within the Sweble Wiki. At the same
time, the scripting module should be a rapid prototyping environment. As a
rapid prototyping environment, concepts have been developed which allow for
reusable, maintainable, evolvable and modular code.

While the practical work of this thesis will be the implementation of basic script-
ing support, the research section will discuss end-user programming and what
qualifies scripting languages for end-user programming. Only a few features of
end-user programming have been implemented, such as sample scripts for adding
rows to tables based on form data with automatic mapping of form elements to
he cell below a specific heading. Development of script repositories which can
be included with little or no coding has not been the scope of this thesis. How-
ever, the foundation for these script repositories has been created and is fully
functional. Also, due to time limitations, further improvements of the scripting
module such as programming by demonstration as discussed in section 3.1 have
not been possible. Nevertheless, the future work section as well as section 3.1 will
discuss possible improvements based on the implemented scripting module which
can be the base of end-user studies how different approaches will be accepted and
appreciated in the context of a Wiki system.

End-user suitability ensured mostly by handling WOM complexities by libraries
which might be embedded by the end-user without understanding the underlying
concepts of those scripts. As the Java API for WOM manipulation only provides
little abstration for low level elements such as round-trip data and text child
nodes, direct exposures of end-user programmers to this

In chapter 2, related work is discussed as the basis for the comparative evalu-
ation and to explain other programming languages, frameworks and standards
which have inspired features of the scripting language. Chapter 3 introduces the
ecosystem of the scripting module, i.e. end-user development, web programming
languages and how scripting languages help for end-user programming compared
to non-sccripting languages. Also rapid prototyping which is convenient to do
with scripting languages and the Java Scripting API which provides the base for
scripting support are discussed in this chapter. The concepts developed with the
implemented Sweble scripting module are presented in chapter 4, such as the
script and form markup and the API that external scripts can use. This chapter
also explains how to use the scripting module with a focus on the concepts for

3

end-users. After the research chapters and the methods chapter, the research
part of this thesis is ended with a comparative evaluation of the scripting module
with other web programming languages such as PHP.

The next chapters give a detailed overview of how the scripting module was
created. The design concepts are discussed in chapter 6, while the implementation
details can be found in chapter 7.

4

2 Related work

The WOM is a novel approach of representing the state of a Wiki. The reason
why Node.js is addressed in this context is to show how other server-side imple-
mentations provide features such as events which are currently not provided by
PHP. This will be the foundation of the comparative evaluation in chapter 5.
Also, other approaches of including script programming languages to Java will be
discussed here.

This chapter will briefly introduce several technologies. One of them is the Web
Scripting Framework which is based on the Java Scripting API and therefore the
same technology which is used by the Sweble scripting module. Thus, the Web
Scripting Framework is an example for generic scripting support. Also, the frame-
work Wicket is explained briefly which is used by the Sweble Wiki and has a
templating approach that might be useful to combine with the Sweble scripting
module to be able to implement functionality not exclusively by WOM manip-
ulation. Moreover, client-side HTML its representation via the DOM and DOM
manipulation via JavaScript is addressed in this chapter. Another programming
language described here is PHP, which is a popular language for the web. Finally,
XSLT is an example for a domain-specific language for producing XML or HTML
through tree manipulation with the property that the page is always well-formed.

2.1 Node.js

The server-side framework Node.js is designed for developing asynchronous event-
driven server applications. Its novel approach has made Node.js popular in the
last years. It is based on the V8 engine by Google. Efforts of browser vendors
to constantly improve the speed of their JavaScript runtime environments has
helped JavaScript and therefore Node.js to benefit from the good performance of
the V8 engine. A node server may have several single-threaded processes which
handle requests. Due to native event support and callbacks, waiting times for
I/O can be used for handling other requests instead of blocking. Its functional
programming approach differentiates Node.js from other web programming lan-

5

guages such as PHP. For example, higher-order functions are used for all heavy
I/O operations. While PHP gives procedural programming styles an advantage by
better performance, Node.js offers functional programming with callbacks. With
a wide range of I/O features such as socket, TLS/SSL or UDP connection sup-
port, Node.js offers custom server features which PHP does not offer. Using a
single-threaded asynchronous event-based architecture without multi-threading
makes scripts more readable, more maintainable and reduces the complexity and
pitfalls of multi-threading. The downside of the events and asynchronous I/O
is that handling different events in their specific contexts can be challenging for
programmers (Tilkov and Vinoski, 2010).

The motivation of Node.js programmers is often to reuse client-side validation
code on the server-side and vice versa1. To do so, modules like jsdom exist which
are able to render HTML text and perform jQuery operations on the DOM (Insua,
n.d.).

Node.js and its approach of reusing client-side verification code, and its event
handling model has inspired the Sweble scripting module.

JavaScript has become popular on the web and is used for sophisticated applic-
ations. Sophisticated modules require modularity which can be achieved by
dynamic loading, however modularity is not supported by JavaScript natively.
Therefore, Node.js uses a module system which loads modules by calling require().
Require loads all dependencies which are not resolved including possible recurs-
ive dependencies. However, as Herman and Tobin-Hochstadt point out, due to
lack of language support, modules in Node.js require programmers to use and
detect the pattern correctly. Also reducing the number of global variables does
not elimate global namespace pollution which still might collide with other mod-
ules. Also, as a custom construct, circumventing it is possible (cf. Herman and
Tobin-Hochstadt, 2011).

2.2 Web Scripting Framework

The Java Specification Request 233 (JSR 233) intended to provide a generic API for
scripting and to provide templating support for servlet containers. For example,
the Web Scripting Framework can be used for integrating PHP and Java, where
PHP can serve as templating engine for the view for Java applications. Also, due
to the popularity of PHP in the web application environment, offering to reuse
and integrate existing PHP code with Java helps to attract more programmers.
It also removes barriers of porting PHP-based applications to Java. The freedom

1also of the Sweble scripting module which uses JavaScript as main scripting language for
reusing client-side code.

6

to combine different software modules and components (e.g. CMS) to create a
new web application gives more options for Java developers. The goal of the Web
Scripting Framework is to help migrate existing PHP applications into Java with
less effort (cf. p. 447ff., Bosanac, 2007).

The Web Scripting Framework is another project which uses the Java Scripting
API which is used by the Sweble scripting module.

2.3 Wicket

Wicket is a component oriented web framework with an active community sup-
port, started by Jonathan Locke in 2004. The idea of Wicket was to overcome
shortcomings in the designs of several mainstream Java standards for web develop-
ment. Wicket allows both classical web application and Rich Internet Applications
(RIA) similar to desktop applications. For RIA, Wicket handles the necessary tech-
nical details to make it as easy as web application development. The component
oriented approach uses POJO objects and is thus light-weight as Swing (cf. p.
7-10, Förther, Menzel and Siefart, 2010).

The Wicket framework takes care of state management and session handling. For
example, entered information is stored in the session when the user navigates to
another page. In contrast to Model 2 frameworks, Wicket is handling low-level
HTTP protocol specifics for the developer. Also, Wicket templates are free of UI
business logic. Wicket templates are also valid and renderable (X)HTML which
allows web designers and developers to work in parallel. As development is done
mostly in Java and templates (panels) can be reused or extended, developers
can make use of all features which IDE provides for refactoring. The downside
of Wicket is that easier development comes at the price of harder scalability as
only the server node that has the session content stored is capable of handling
client requests. However, the advantages of reuse and better maintainability
compensate the lack of Representational State Transfer (REST) as suggested by
Roy T. Fielding (cf. p. 4-14, Dashorst and Hillenius, 2008).

Generally there is just a Java and a XHTML template, non-Java configuration
is minimal in Wicket. Also, Wicket displays readable errors in the development
mode (cf. p. 7-10, Förther et al., 2010).

Wicket has been used for implementing the UI for Sweble wiki (e.g. logger,
interactive scripting) and its wiring of Java code with HTML templates is a
good example for a templating mechanism which might be useful in subsequent
versions of the Sweble scripting module.

7

2.4 HTML, DOM and JavaScript

HTML on the client-side also uses inline scripts (e.g. with the onclick or onload
attribute), external scripts and script references (cf. Le Hors, Raggett and Jacobs,
1999). The referencing of external script resources is a defacto standard and
widely used on the web. In order not to invent yet another standard, the way
how external scripts are referenced in JavaScript will serve as a standard.

Browsers transform the HTML sent by the server to a tree-based DOM represent-
ation. The DOM can be manipulated by adding, removing child nodes or editing
text content. Also, setting innerHTML of a node adds a set of elements to the
DOM. This is similar to the WOM, even though a concept similar to innerHTML
does not exist in the WOM (cf. Wood et al., 1998).

2.5 XSLT

XSLT is a language to transform XML documents to other documents by dis-
patching nodes and handling nodes by templates which match these nodes. (cf.
Clark, 1999). XSLT is too complex for end-users, but as domain-specific lan-
guage for XML generation, it ensures valid HTML which is not guaranteed with
string concattenation. Also, its approach creates target documents by traversing
and dispatching nodes, which is an approach comparable to programmatic WOM
manipulation.

2.6 PHP

PHP is one of the most common web script languages. According to Tatroe et
al., approx. 78% of the top 1 million website use PHP (cf. Tatroe, MacIntyre
and Lerdorf, 2013). It uses placeholders inside a HTML file which are replaced
by the content “printed” by statements inside PHP (cf. The PHP Group, n.d.).

PHP is a template language which allows inserting dynamically generated text
instead of <?php ?> placeholders, which get evaluated by the PHP interpreter.
PHP is used by classical content management systems (CMS) such as WordPress.
PHP suffers of shortcomings in the initial language design, and many features such
as object orientation and namespaces have been added in more recent versions of
the language only. Also, global variables which were automatically created from
request parameters were a major security issue in early PHP versions until they
got removed (Cholakov, 2008).

8

PHP and other templating languages render pages using string concatenation (cf.
The PHP Group, n.d.). However, the rendered result is interpreted as a DOM
when rendered by the web browser on the client side. Serializing the HTML
based on strings with placeholder may be convenient in some conditions, but
comes with disadvantages (cf. Cholakov, 2008). For example, escaping has to be
taken care of by the template developer and mistakes or improper encoding of
input lead to problems such as Cross-Site-Scripting vulnerabilities (XSS). Also,
refactoring templates which are composed by placeholders (and thus utilize string
concatenation) is not possible, as the placeholders may included arbitrary text
e.g.

<?php echo "</td></tr></tab";

echo "le><table><tr><td>"; ?>

The PHP sample code is kept unreadable on purpose to show that refactoring
is not possible as elements are created by print statement. It is therefore not
possible to replace all table nodes by other markup, for example.

9

3 Background research

3.1 End-user development (EUD)

Nowadays, computer skills are essential for many daily private and work tasks.
Most computer users can work with the computer due to the possibilities of
understandable or intuitive graphical user interfaces, but have no programming
skills. The understanding of how to use a computer for specific tasks is known
as computer literacy. Computer literacy is getting more important together with
of information and information technology, which creates the need to develop
and improve computer skills of people (cf. Konan, 2010). Computer literacy,
however, is often not enough to automate repetitive tasks, which is why end-user
development (EUD) is helpful (cf. Cypher et al., 2010). End-user development
or end-user programming aims to provide the tools and mechanism to enable
end-users to easily develop customizations or automations. Parametrization or
customization (e.g. using a different view for the information) are not considered
end-user programming, as they offer only limited options to choose from (cf.
Lieberman, Paternò, Klann and Wulf, 2006).

For many years, IT systems try to be easy to use. IT systems are used in dy-
namic environments where requirements change quickly or are not known pre-
cisely enough before-hand by end-users or customers to enable developers to
provide a one-time and long-lasting solution. Also, different users might need
different tools to optimize their personal routines within the IT system, with
routines which might change on a monthly or even daily basis. Mostly, adapt-
ations of the IT systems by professional developers are costly, time-consuming
and not available as quickly as required. Also, due to lack of domain know-
ledge, programmers cannot always directly provide a solution that matches the
requirements of the end-user. Therefore, end-users need to be able to customize
their system continuously themselves to achieve a short or medium term solution.
There are even IT projects where end-users actively participate in the develop-
ment process as end-user developers using programming tools which require no
programming skills. This end-user software engineering approach has avoided fail-
ures of software projects in some scientific experiments and reduces development

10

costs (cf. M. M. Burnett and Scaffidi, 2013).

End-users use end-user development tools in their area of expertise to support
their goals. Due to potential lack of knowledge compared to IT professionals,
those programs, spreadsheet formulas or web pages might be of poor quality or
even have security flaws. In a professional context, errors due to poor end-user
programming can result in a economic loss. Therefore, the interest of researchers
is to provide tools that avoid common pitfalls (cf. p. 2ff., Ko et al., 2011).
For example, for web pages, a mechanism to prevent cross-site scripting (XSS)
or SQL injections or writing access to files or scripts for web page visitors are
mechanisms of restricting possibilities for the end-user. For example, the WOM
manipulation which is allowed by the Sweble scripting module is not vulnerable
to XSS and SQL injections and therefore the Java WOM API is a domain-specific
language for creating valid markup.

There are several motivations for end-user programming, which will be introduced
in the following by giving use cases where end-user development is desirable. One
example is automating repetitive tasks from multiple or dozens clicks to one or
two clicks. This is especially useful when the user interface offers to many op-
tions or if the user interface cannot know personal information. Also, automated
notifications via SMS or email (e.g. a warning message) is a common need which
end-users may handle themselves. Mashups are a combination of several sources
of information to create or annotate information in a way to make it more useful
for the end-user (cf. p. 3ff., Cypher et al., 2010). Spreadsheet programming
and creation is an example for a very popular form of end-user programming
with more than 50 million estimated users (cf. p. 11, Cypher et al., 2010).
The problem of conventional programming languages is that they are “obscure,
abstract and indirect” (p. 12, Cypher et al., 2010). That means that the code re-
quired for a specific action does not permit syntax errors and the code uses more
complex programming constructs than the end-user might expect (e.g. invoking
invent handlers to trigger a mouse click on a button instead of “click button”).
Without understanding of programming concepts such as event handling, end-
user suitable languages need to provided functions and names that the end-user
can understand. An end-user can be expected to understand terminology from
his daily routines of working with the computer to avoid learning barriers and
misinterpretation of functionality.

Strategies to reduce the difficulty for end-users to write script languages are
structure editors, where a wizard allows the user to select appropriate commands
with a GUI and the wizard creates correct syntax (cf. Cypher et al., 2010). Also,
natural development using natural languages or gestures are emerging disciplines
which might play an increasingly important role for EUD.

Programming by demonstration (PbD) is a technique where the user performs a
task and then the system creates a program to repeat the task for other instances

11

of “data”. In cases where the action of the PbD system is not unique, the user
might be asked to choose the correct action (cf. Cypher et al., 2010). With
Programming by specification, the end user describes the desired target system
as text or with a visual tool which then generates the target system, provided
that the input is understandable (cf. M. M. Burnett and Scaffidi, 2013).

End-user development (EUD) should have a “low threshold” to enable beginners
to adapt EUD quickly. At the same time, it should have a “high ceiling” to en-
able experienced programmers to use powerful tools using widely accepted design
principles. This is done by providing metaphors a user can relate with instead of
using high-level concepts which can be barriers to novice users. Collaboration in
code generation and mutual development where end-users help to design a system
are key features of many EUD approaches (cf. p. 3ff, Paternò, 2013).

As briefly introduced before in this section, end-user programming goes so far
to have the end-users develop services (e.g. e-government services) themselves
with only little interaction of professional developers, who design the underlying
model for the application. This is called end-user software engineering. By having
end-user developers, having a complete and unambiguous specification of the
requirements beforehand is not necessary. The result of an experimental phase
showed that end-user developers enjoyed the experience of creating programs with
the tools at hand (cf. Fogli and Provenza, 2011). This experiment shows that in
the future, applications in the web or for companies might actually be developed
partly by the end-user developers - reducing the importance of requirements
elicitation.

End-user development approaches have are not limited to web and desktop applic-
ations (e.g. browser automation tools and spreadsheet programming). End-user
programming has already been applied to mobile devices, for example with the
TouchDevelop project by Microsoft. TouchDevelop provides a simple programming
language which gives users the chance to program the mobile device without using
a computer. A field study of TouchDevelop has shown that a common character-
istic is code reuse, especially of own code. ALso, the survey shows that beginners
are the largest user group (cf. S. Li, Xie and Tillmann, 2013). Especially the
popularity of libraries is a result of that survey which encourages the use of script
repositories for the Sweble Wiki

While end-user programming is getting increasingly important, lowering learn-
ing barriers of programming languages and programming environments which
includes, for example, the editing and debugging tools. Fig. 3.1 shows which
kind of barriers occur to end-user programmers when they learn Visual Basic
for Excel. As programming skills are missing, end-users work with assumptions
which may lead them to barriers where end-users get stuck or which lead to other
barriers. There are only edges when the problem is not insurmountable and when
the edge percentage is greater than 10%. The result is that while some barriers

12

Figure 3.1: End-user programmers try to overcome lack of programming skills
(e.g. programming concepts and understanding) with possibly wrong assump-
tions. “For surmountable barriers, the percent of each type overcome with in-
valid assumptions, and the type of barrier to which the assumptions led.” (cf.
Ko, Myers, Aung et al., 2004).

may be passed with invalid assumptions, there is another barrier where the user-
ends up with. Based on the evaluation of Visual Basic for Excel, the barriers can
be classified universally as (cf. Ko et al., 2004):

• Finding an abstract solution and planning it in the design phase in such a
way to have the computer do the intended task (design barriers).

• Also, finding the ideal tools to use to solve a specific problem requires
experience which an end-user might not have (selection barriers).

• There are problems of combining behaviors and understanding the rules of
composition of algorithms, modules etc. (coordination barriers).

• Unclear or not intuitive programming interfaces mislead the user how to
use that interface (use barriers).

• While users sometimes manage to formulate code the way they expect it to
work, some external error (understanding barrier, e.g. compiler error) or an
internal error (information barrier) occurss when end-users find no means
to test their hypothesis (e.g. what is the value of a variable at a specific
point in the program?)

Chickenfoot

An example for an end-user programming language is Chickenfoot. Chickenfoot
allows end-users manipulate the DOM and therefore a web page on the client
side. It can be embedded into Firefox as an extension. Chickenfoot uses a syntax
that is very close to the end-user. With intuitive functions like

• find (HTML element or form element),

• click (on link or button),

13

• check or uncheck (a checkbox),

• enter (information to a text field) or

• pick (from a drop-down list or selection),

common tasks on websites can be automated without using “obscur” JavaScript
syntax. Web page components are addressed by keyword matching. As the
results are visible directly, the user has direct feedback of what the code does (cf.
p. 39ff, Cypher et al., 2010 , p. 5ff, Paternò, 2013).

For example,

enter("Sweble Wiki");

click("Search");

is sufficient to trigger a search on a search engine website (cf. p. 39ff, Cypher
et al., 2010). This is a synax which can be offered by libraries using the Sweble
scripting module. Therefore, using a Chickenfoot-like syntax can be part of a
simplification approach help doing simple tasks with little effort. Especially the
keyword matching approach of Chickenfoot should be favored over selection mech-
anisms such as XPath, as XPath is more complex to learn.

CoScripter

CoScripter helps to collaboratively record and automate tasks on the web with its
human-readable scripting language ClearScript. It consists of an online repository
of scripts which allows loading the script to the browser extension. There, the
script can be inspected step-by-step, with the code and the affected web page
element highlighted. CoScripter is inspired by Chickenfoot but due to its human-
readable language it is even better suited for end-users without programming
experience (cf. p. 86ff, Cypher et al., 2010 ; p. 5, Paternò, 2013).

Sloppy programming

With sloppy programming, interpreters/compilers allow “pseudonatural language
instructions” and do not return a syntax error, but try to find the closest code
that would be valid. This is similar to search engine suggestions when the user
mistypes (cf. p. 290, Ko et al., 2004 ; p. 289ff, Cypher et al., 2010 ; (cf. p. 3ff,
Paternò, 2013)). Sloppy programming can be used in the Sweble scripting module
by choosing a programming language which allows for sloppy programming.

14

3.2 Web programming languages and their prob-

lems

Web programming languages such as PHP have evolved over time and have been
rarely engineered using scientific principles. The goal of backwards-compatibility
comes with the disadvantage that improvements in language design can only be
of minor nature and cannot break with previous design decision, even though
they have been proven problematic. At the same time, web applications have
become more and more pervasive. In the following, common problems with web
programming languages will be introduced, which will serve as a foundation for
the comparative evaluation in chapter 5.

3.2.1 Weaknesses of templating languages

On the web, script programming languages which allow “quick and dirty” rapid
prototyping programming enjoy great popularity. An example for such a pro-
gramming language is PHP, which has been briefly introduced in section 2.6

From a programming point of view, PHP is normally not using the expressive-
ness of tree-based data structures such as XML, as it renders pages (mostly to
HTML) by string concatenation. String concatenation means that the output of
a script code may call a print function/procedure which will append its argument
to the HTTP response (cf. The PHP Group, n.d.). The use of string concatena-
tion in PHP also increases the risk of producing invalid HTML code. Examining
a PHP script if it may produce invalid HTML code is not straight-forward, as
invalid HTML may be produced in rare or exceptional cases due to conditional
statements.

<html>

<php

$attr=’ class="color:red;"’;

echo "<div$attr>".$_REQUEST[’param’].’</div>’;

?>

</html>

This code sample shows how XSS is possible, which might execute malicous code
on the client-side and also destroys the validity of the generated XML, e.g. with

$_REQUEST[’param’]=’<script>’;

Also, if the first or last line of code was missing (i.e. <html>) the PHP would never
generate valid HTML code even if input validation was used for the parameter.

15

This shows that PHP does not guarantee to produce valid HTML, while other
languages such as XSLT guarantee valid HTML/XML.

The design of the PHP programming language mislead especially inexperienced
programmers to adapt problematic programming practices. Also, security vul-
nerabilities come also from poor language design. Using object oriented pro-
gramming in PHP reduces the execution speed, as instantiating PHP objects
takes longer than Java objects. Therefore, procedural scripts are favored over
well-factored object-oriented applications in terms of performance. In his paper,
Cholakov (Cholakov, 2008) also mentions the lack of strict typing and the lack
of pre-compilation optimization. However, as Bosanac points out, this is a char-
acteristic of script languages and therefore is not a PHP-problem, but a question
of scripting versus “system programming languages” (Bosanac, 2007).

Another problems identified by Cholakov (Cholakov, 2008) is that configuration
can influence the behavior such as short open tags (<? instead of <?php). Future
scripting language implementations such as the scripting module of the Sweble
Wiki should avoid configuration options which reduce portability of code. Also,
events are not supported natively. Current PHP versions do not allow multi-
threading even though multiple core CPUs are common for web servers and get
increasingly important for modern web programming frameworks.

The weaknesses discussed in this section are the base of some arguments in the
comparative evaluation in chapter 5.

3.2.2 Security problems

The pervasive use of web programming languages comes also with security prob-
lems. HTML5, for example, now allows graphical browser games and offline data
storage, reducing the gap between desktop applications and web applications fur-
ther (cf. WHATWG, n.d.). However, new features come with security threats.
For example, 3D browser games require code originating from a website to be
executed on the graphics card, potentially exploiting some hardware bugs. At
the time of development, the graphic cards were not expected to run compu-
tations coming from potentially untrustworthy sources such as the web. While
malicious client code may come from an untrustworthy website, XSS can even
bring untrustworthy code to generally trusted websites.

Information security, which ensures integrity and confidentiality, requires inform-
ation flow policies to be enforced. While many web scripting languages provide
ad hoc mechanisms to ensure information flow security, they do not enforce those
policies (P. Li and Zdancewic, 2005). Information flow may be controlled by
scripts which validate user input. The Sweble module avoids information leakage
by giving scripts only access to data which is permitted in the current transaction.

16

In the following, typical web security problems such as Cross-Site-Scripting and
SQL injections will be introduced to demonstrate what scripting frameworks need
to do to avoid vulnerabilities.

XSS (Cross-Site-Scripting) exploits vulnerabilities that normally come from a lack
of input validation. A source controlled by the attacker (e.g. an “infected” URL
inside a URL) may direct the user to the correct website, but still manipulate the
DOM through parameters so that external scripts are loaded which manipulate
the DOM further so the data entered by the user ends up at a sink controlled
by the attacker and thus can get abused (cf. Fogie, Grossman, Hansen, Rager
and Petkov, 2011). For example, XSS is the base of many credit card frauds.
The problem is that input validation has to be done inside the script explicitly
as most web programming languages are not domain specific language (DSL)
which handle security transparently. A DSL in the context of HTML template or
web page generation would take care of escaping and breaking out of tags itself.
Instead, the web developer has to take care of proper escaping himself and when
doing a mistake, a vulnerability can result. There are frameworks which help to
ensure proper escaping of data that comes from user input, but full or partial
XSS-safety is not a feature of most web programming language itself.

SQL injections store malicious code in the database (persistent SQL injections)
or use poor SQL query formulation to leak information inside the database to
sinks which are controllable by the outside(reflected SQL injections). This can be
used to disclose confidential data such as passwords to a hacker. Poorly designed
programming language features favor SQL injections, such as the mysql extension
by PHP. PHP’s mysql extension should not be used, but replaced by mysqli or
alternatives (cf. Tiwari, 2014).

3.3 Scripting languages

This section will describe characteristics of scripting languages and what differ-
entiates them for non-scripting languages.

The idea of scripting languages is to create more sophisticated applications with
less effort (cf. p. 5, Bosanac, 2007). Scripting languages are high level pro-
gramming languages, which are also referred to as third-generation programming
languages.

”Scripting language[s] [are] to write user-readable and modifiable programs that
perform simple operations and control the execution of other programs” (cf. p.
12, 25-28, Bosanac, 2007). The availability of source code is common even though
not necessarily the case when code is secret (cf. p. 13, Bosanac, 2007).

17

Scripting languages often use dynamic typing, which means that no type inform-
ation is provided when declaring a variable. They distinguish themselves from
non-scripting languages in terms of run-time performance and debugging com-
plexity. Scripting languages are less performant due to dynamic typing and the
interpreter overhead. Debugging might be more difficult due to dynamic typing
(cf. p. 678, R. Liguori and Liguori, 2014).

Code evaluation with functions like eval is supported by several scripting lan-
guages. For example, Python and JavaScript provide an eval() function which
executes code and therefore allows treating code as “data”. This is possible, as
the interpreter is present whenever code is executed. Scripting languages allow
closures which is passing code as function argument, which is a concept similar
to list comprehension in declarative languages. Also, scripting languages often
allow to pass functions as arguments (cf. p. 19ff, Bosanac, 2007).

Moreover, script languages also differentiate themselves, as they

• may include domain-specific features (cf. p. 677, R. Liguori and Liguori,
2014),

• are embeddable,

• are extensible and

• are easy to learn and use

(cf. p. 71, Bosanac, 2007)

Typical applications of scripting are

• Unix shell languages (cf. p. 41, Bosanac, 2007)

• Prototyping e.g. with Python (cf. p. 47, Bosanac, 2007)

• End-user customization with so-called macro languages, e.g. VBA for Mi-
crosoft Excel or macros in LibreOffice (cf. p. 49, Bosanac, 2007)

3.4 Rapid prototyping

Another goal of the Sweble scripting module is to provide a rapid prototyping
environment.

Scripting languages lack overhead of declaring variables and therefore are ideal for
rapid prototyping. In the prototyping development model, first requirements are
analyzed and a prototype is developed to present a solution for the requirements.
This prototype is presented to the users who evaluate the prototype or to clarify

18

misunderstandings between client and developers and detect missing features (cf.
p. 44-45, Bosanac, 2007).

Scripting languages have more powerful statements and data types than system
programming languages. This shortens the code and leads to higher level code.
Also, due to dynamic typing, less code needs to be written. Moreover, as no com-
pilation and linking is required, testing changed code requires less time. However,
interpreted languages consume hundreds or thousands of machine cycles, while
the average system programming requires only five machine cycles, as Bosanac
points out. However, this performance loss is a minor problem as hardware is
getting more and more powerful and allows programming languages to get more
human-oriented. Therefore, scripting languages help to improve development
speed and are ideal for rapid prototyping and increase productivity (cf. p. 28,
Bosanac, 2007).

3.5 Scripting in Java

Several approaches have been designed to allow for scripting in Java, such as the
Bean Scripting Framework and JSR-233.

The Bean Scripting Framework (BSF) is a Java scripting framework developed by
IBM which has the been moved to Apache. BSF supports only scripting languages
with an interpreter implemented in Java or native engines implementing the Java
Native Interface, or in short JNI (cf. p. 246, Bosanac, 2007).

While BSF is a stable project and matches the requirements for scripting, there
was a need for Java itself to allow for scripting natively with simpler inclusion
of upcoming scripting languages and more features. The Java Scripting API was
introduced in Java SE 6. Examples of features of the Java Scripting API which
are not supported by BSF are eval(), compiling code to bytecode and a dynamic
script engine discovery mechanism and defining binding scopes. Also, the Java
Scripting API has a generally a “cleaner API” compared to BSF(cf. p. 408, 445,
Bosanac, 2007 , p. 175, R. Liguori and Liguori, 2014).

Java Specification Request 233 (or JSR-233) is a Java abstraction layer which allows
using several scripting languages within Java. JSR-233 or “Scripting for the Java
Platform” is a specification with originally two parts: General Scripting API
and Web Scripting API. The General Scripting API deals with script integration
in Java applications in general, while the Web Scripting API has the goal of
embedding scripts in servlet containers or integrate existing Java applications
and dominant web scripting languages such as PHP(cf. p. 389, Bosanac, 2007).
The Web Scripting Framework has been discussed in section 2.2.

19

The bindings mechanism is provided by Java to the script engine. It is a simplified
and standardized way of passing data between the host language (here Java)
and the script written in an arbitrary scripting language. Bindings implement
the interface Java.util.Map interface (cf. p. 25ff, Sharan, 2014) and therefore a
“simple” key-value pairs.

The JSR-233 is designed to ease the integration of all kinds of script languages
with the goal of portability (cf. p. 391, Bosanac, 2007).

Available JSR-233 scripting languages

The script languages which are supported by the JSR-233 are, for example:

• BeanShell

• Clojure

• FreeMarker

• Groovy

• ACL with Jacl

• JavaScript (with Nashorn or Rhino)

• Jawk

• Jelly

• JEP

• Ruby (with JRuby)

• Python (with Jython or JPython)

• Scala

• Sleep

• TCL/Java

• Visage

• JudoScript

• ObjectScript

• Velocity

(cf. Appendix B, R. Liguori and Liguori, 2014 and p. 122, Bosanac, 2007).

20

4 Methods: Usage and API of
the scripting module

4.1 Events of script invocations

There are several events where triggering script evaluation can be useful. In the
case of a Wiki, script evaluation is possible

• when rendering a page with external scripts or script expressions (onRender),

• when saving a resource after editing it with the resource editor (onSubmit)
and

• when submitting a form on a resource (onSave).

Therefore, embedding script snippets is possible in three variants:

• inline script expressions (just in case of onRender),

• external scripts, by referencing one or more external scripts from within an
article resource which will be evaluated,

• external scripts, by referencing one or more script resources which will be
evaluated and

• interactive scripting (entering code and evaluating it when a button is
clicked).

Script types (i.e. the script language) can be provided to script expressions,
external scripts and script resources. Script references, however, may not have
a script type. This is due to the fact that the referenced script is supposed to
provide the script type which may also change over time transparently.

The preferred way of adding server-side logic to a resource is by referencing an
external script. An external script can be a (JavaScript) script resource. Another
way is to use the tag extension external-script. Surrounded by <external-script>
and </external-script> in the familiar XML syntax, a script can be placed within

21

an article. When several scripts exist on an article, addressing a specific script
is not unique. Then an external script needs an id attribute, which allows other
articles to address the script using

<script src="/path/to/article#id"></script>

Referenced scripts are not evaluated on the resource where they are placed. In-
stead, they are displayed only with syntax highlighting. The intention is that one
can have several scripts in different script languages with documentation Wikitext
around these scripts.

Scripts running in the Sweble engine can make use of the WOM Java API (cf.
Dohrn and Riehle, 2011) by accessing the documentbinding or using the argu-
ments passed to the onRender, onSubmit and onSave.

4.2 Script expressions

Script expressions are evaluated when rendering the page. Possibly, scripts eval-
uated on rendering use values provided by scripts triggered after submitting a
form. The approach of using script expressions is comparable to templating as
the script expression is replaced by the evaluated code. However, more-liners are
not supposed to be implemented using script expressions. To avoid using script
expressions for sophisticated tasks (resulting in a unclear notion for the end-user
of what will be the rendered result when more than one statements are presents),
the script has a limited context (cf section 4.8.1.

Script expressions are containers for simple inline expressions written in a specific
script language. For example, a mathematical computation written in a script
language such as 9*9; is an expression which yields a result, in this case 81. A
return statement is not required for script expressions. Script expressions have
several attributes such as the script type which defines the script language media
type of the script. Also, script expression have the evaluationTime attribute with
the default of intermediate (side effect free) and the alternative options before
and after.

Script expressions may use variables defined by previous script expressions or
previous referenced external scripts or referenced script resources.

Examples:

<script eval="server" type="application/javascript">9*9;</script>

<script type="application/python" evaluationTime="intermediate">

print "hello world"

</script>

22

While the first sample script is in JavaScript, the second script is written in
Python. The requirement for executing Python scripts is that the Python .jar file
is present in the classpath. The eval attribute is currently optional as the wiki
does not yet support client-side scripting.

Allowing script expressions in Wikitext eases the task of including dynamically
generated text into the WOM. Without script expressions, the programmer needs
to be able to address the position first by creating placeholders and then has to
write an external script to manipulate that WOM element. To make this special
case more convenient, expressions are allowed inline to allow for quick templating.

Inline expressions are intended for very simple scripts, ideally one-liners. For ex-
ample, returning the current date or counting list elements on a page (e.g. by us-
ing an external library). Script expressions have a limited document.getContext()
binding to avoid “abusing” script expressions for more sophisticated applications,
as this comes with several problems and may cause confusion (e.g. with more
than one statement, which one will be printed?)

4.3 Referencing external scripts and script re-

sources

External scripts are scripts which themselves are not executed when they appear
on a page. Instead, they need to be referenced to be evaluated. External scripts
are intended for any more sophisticated script than script expressions.

As all external scripts run in the same context and therefore have access to the
variables and functions defined by previous scripts, external scripts are ideal for
use libraries. At the same time, scripts evaluated for rendering pages for different
user are invisible to each other. Libraries consisting of one or more external
scripts referenced by the script using the libraries can handle complex aspects
of the WOM manipulation. Using libraries, end-users may use simple concepts
for specific applications. Inside the Wiki ecosystem, collaboratively developing
scripts and documening them

4.3.1 Script references

Script references are required to trigger script evaluation when no script expres-
sion is used. Script references hold a source WRI of an external script or of
a scripting resource. In case of a referenced external script node (i.e. a script
embedded in an article resource), an external script ID can be used to address a
specific external script on an article. If no script ID is provided by using a URL

23

fragment (i.e. after hash symbol #), then all scripts defined by external script
nodes on the article resource are evaluated.

A resource may have multiple script references. All scripts referenced by script
references run on the same context. This means that a script running after
another script (e.g. the 2nd referenced script) may read variables created by the
previous script and can see all changes done by the previous scripts. This is
similar to the way how the script tag in HTML works with external scripts. The
resource or article which contains the script reference evaluates the referenced
script resource or external script. The resource with the reference is also passed
to the external script as argument and is available as context resource through
document.getContext().getContextResource() where applicable.

When several script references are placed in one article or resource, then the
scripts are defined in the order of the script reference tags. The referenced scripts
can be in any scripting language supported by the Scripting API and enabled by
the Sweble wiki administrator. Mixing differnet script languages and accessing
the same scripting context is a feature provided by the Scripting API ScriptCon-
text. Therefore, variables defined in one referenced script can be accessed by
subsequent scripts. Due to the generic nature of the Scripting API, any script
language can therefore be used.

4.3.2 External script nodes

Exernal scripts nodes are XML nodes inside an article resource which contain
code. When a page has an external script node, it is displayed with syntax-
highlighting. However, external script nodes on ab article are not evaluated.
External script nodes are only evaluated on the resource on which a script ref-
erence for that external script node exists. External script nodes may be in
any scripting language. The script language is defined by the type attribute of
the external-script XML element in the Wikitext. Also, using different scripting
languages for different external script nodes in one article resource is possible.

External script nodes are well-suited for libraries as code and Wikitext document-
ation can be on the same article resource. Therefore, the surrounding article can
explain the presented algorithm and how to use it for own projects. The doc-
umentation is not inside the script in the form of programming language com-
ments, but readable and can use Wikitext features such as lists, text formatting
and tables for better readability.

External script nodes may have the attribute id to allow script references to
reference one of many external script nodes in an article resource. Without the
id attribute, all external scripts nodes inside an article resource will be evaluated.

24

evaluation time before1 before intermediate after
may modify no yes no yes
may return no yes yes yes
access to original WOM yes yes yes yes
access to modified WOM no no no yes

Table 4.1: Evaluation time and possibilities of scripts regarding WOM manip-
ulation and/or returning values

Example:

<external-script id="hello-world" type="application/javascript">

function onRender() {

return "hello world";

}

</external-script>

<script src="ArticleName#hello-world"></script>

4.3.3 Script resources

Script resources are resources inside the Sweble wiki. This ressources contains
the script code to be evaluated. When creating a new script resource, apart from
the code, also the evaluationTime and script language needs to be defined using
the media type of the script language. The script language media type must start
with application/, but does not need to be defined as only a subset of all available
scripting language will be made available by the administrator. In case a script
language is not known, referencing it will display an error on the referencing
resource. This can be fixed by the administrator by adding the script language
to the Sweble Wiki server.

A script resource can only have code in one specific script language. A script
resources may only contain one script unlike external script nodes which can
appear inside an article several times. Details about the script resource can be
found in the section 7.5.

The disadvantage of script resources compared to external script nodes is that
documentation is inside script code and therefore less readable for an unexperi-
enced end-user.

25

4.4 Evaluation time

Each script may have an attribute evaluationTime. Possible values are before,
intermediate and after. The default is intermediate, i.e. evaluating scripts as
during the visitation. What evaluation time is used is determined by the script
reference. The referenced script (i.e. script resource or external script node)
may have also an evaluationTime attribute. If present, the script is only executed
when the evaluationTime attribute of the script reference and referenced script
match. If not present, the evaluationTime of the script reference will be used. It
is possible to declare more than one allowed value for evaluationTime of a external
script by separating all allowed values by space, e.g. evaluationTime="before

after"

• before: Before any pre-rendering is done, the required WOM tree is cloned
and can thus be modified. The script has access to the original WOM tree.
The returned tree is processed further by the pre-renderer. When accessing
or modifing elements on the page, this is done on the elements when they
are not expanded (in case of tag extensions) and the returned nodes may
still be transformed into something else. For example, when a Transclusion
is returned, then this transclusion will be expaneded before rendering the
page to the user.

• intermediate (default): The default case occurs when attribute evaluation-
Time is not provided or when the value of the attribute evaluationTime is
intermediate. Then, the script is evaluated during stacked visitor processing.
Therefore, the script must be side effect free to avoid complications between
visitors. It may return a value which is inserted instead of the original script
node in the result tree. The node might be redispatched and transformed
into something else, e.g. when returning a external-script node, it will be
transformed to a syntax-highlighted preformatted text. It has only reading
access to the original tree and not to the semi-modified result tree because
it is nondeterministic, i.e. some nodes might be processed while others for
no obvious reason are unprocessed. Therefore, scripts evaluated at this
evaluationTime have to be side-effect free.

• after: Scripts at evaluationTime after have access to the original and result
tree. The returned node is not processed by the pre-renderer, therefore
a script node should return a value or a sub tree which does not require
further processing.

1without cloning

26

4.5 Execution model

Scripts are run in a multi-user environment. Scripts running to render pages for
different users run seperately and have no side-effects on each other.

Scripts are not only run, but also created in a mult-user wiki environment. This
means that privileged users might create or modify scripts while some attempts
of unauthorized users to create scripts need to be prevented. At the same time,
editing a page without modifying the script itself needs to be allowed - provided
that the user has the privilege to edit pages. Therefore, anybody who saves
a script and or creates changes code is stored internally. When this user is
authorized to sign scripts, those scripts will be evaluated by all users accessing
that resource. If a user is not authorized, an error is displayed at the location of
the script tag and the script is not executed. To enable execution for that script,
an authorized user needs to save the script again. If a unauthorized user changes
an article resource without changing the code, the signature of the last editing
user remains which means that the script can still be evaluated if it was signed
before the save operation.

If no permission of the stored last user for script execution exists, an error is
displayed at the location of the script tag and the script is not executed. To
enable execution for that script, an authorized user needs to save the script
again.

Also, scripts may contain malicious code and therefore mechanisms is required
to protect the Wiki system from loosing its integrity.

4.6 Forms and form elements for Sweble resources

Server-side scripting alone does not yet give enough flexibility for more sophist-
icated applications. Forms are necessary to provide data for script logic and to
trigger script evaluation, such as onSubmit, i.e. when a form is submitted.

Form and form element generation is triggered by placing default HTML 4.x form
tags inside the WikiText. A form as well as form elements are identified by the
attribute name. This attribute name decides how to access the content of the
form in the script. A specific form element can be addressed by its form name in
combination with its form element name.

Form elements can be populated with default data on first encounter within a
user session. The default values can be passed using standard HTML syntax.
For example, to pre-populate a text field, the attribute value can be set to a
specific value. To pre-populate a text area, the text content of the text area

27

can be filled. Similarly, to do a default selection for radio buttons, checkboxes is
checked="checked" as attribute. For <select> dropdown or multiple choice
options, the attribute selected="selected" of <option> elements means that
the respective option is selected by default.

The following form elements have been implemented as a selection of all available
Wicket form elements and can be used with the following markup

• text input field, i.e.
<input type="text"/>

• text areas, i.e.
<textarea/>

• dropdown lists, i.e.
<select><option/></select>

• multiple selection lists, i.e.
<select multiple="multiple"><option/></select>

• checkboxes, i.e.
<input type="checkbox"/>

• radio choices, i.e.
<input type="radio"/>

• buttons, i.e.
<input type="button"/> or <button/>

An example for using forms is shown here:

<form>

<input type="text" name="item"/>

<input type="submit" value="Add item"/>

</form>

<script src="ScriptResourceName"></script>

Also, there is a script resource with the WRI “ScriptResourceName” (script type:
application/javascript) with the following code:

function onSubmit(formData, resource) {

resource.getBody().appendChild(document.createStrong(formData.item

));

}

When submitting the form, the resource is appended temporarily with a bold
text with the value provided in the text field.

28

It is possible to define default values for form elements. The value attribute of
a text field, the text content inside an text area and the selected or checked
attribute of drop down or multiple choice lists resp. radio buttons or check boxes
are the values that are displayed as default when the user accesses the form for
the first time. The user may then reuse or overwrite those values.

4.7 API

Several events such as onRender, onSubmit and onSave can be handled by external
scripts.

For example in case of onRender define events, a variable called onRender or a
function called onRender needs to be defined globally. However, this allows for
defining just one function for each event. To define more functions for one event,
the function might dispatch to other functions

4.7.1 onRender

In case onRender is defined, the article resource containing the script reference
will run the script before rendering the page.

onRender is called with one argument which is the root node of a resource.

The onRender function of a script is evaluated each time the page is accessed,
even though future versions of the scripting module might cache the result of
script evaluation and only re-render when a resource has been changed. If cach-
ing is used, dynamic scripts such as printing the current time will change their
semantics.

If the script has written to System.out (e.g. with print(’’);) then this is used
instead of the returned value. The reason for favoring the System.out is that
the result is more reliable than the returned value, as the last value is returned
even if it is not apparent for the user. In other words, the print statement has
precedence over the return statement.

For security reasons, persistent modifications during onRender will throw an error
to avoid an excessive number of commits.

4.7.2 onSubmit

onSubmit is called with two arguments, where the first argument is the root node
of the resource (e.g. article resource) and the second argument is a key-value-map

29

of the submitted for elements.

When several forms exist on a page, the onSubmit function may do get the form
name and even the button name to dispatch to an appropriate submit handling
function.

4.7.3 onSave

If the onSave function is defined inside the script, then script evaluation of this
function is triggered when the article with the script reference is saved. The
article with the script referencce is the context resource on which the script may
perform reading and manipulation operation.

onSave is triggered whenever changes to the observed pages occur in the form of
a save operation on an article. The argument passed to onSave is the context
resource node.

4.7.4 Event listeners

While the functions (or variables) onRender, onSubmit or onSave are well-suited
for end-users, experienced programmers might prefer to use event listeners. Ex-
plaining event listener concepts to end-user programmers is too complex, and
therefore event listeners have been implemented only for helping experienced
programmers to develop libraries more efficiently. For example, only with event
listeners it is possible to register more than one function to be called on specific
events. Developers might work around this shortcoming by developing an own
dispatching mechanism inside those functions (e.g. onRender), but it is easier
when the scripting module provides that functionality.

Therefore, the scripting module provides the function document.addEventListener,
which accepts an event name as first and a function as second argument. The
event name can be render, submit and save. However, it is also possible to use
custom event names for other purposes. For example, a user might register
events named onInvalidFormSubmission and invoke an event and thus all functions
registered for that event. Generic event support has been implemened as the event
based model (e.g. Node.js cf. section 2.1) is gaining popularity

All scripts may access the default binding document. The reason why document
has been chosen instead of a WOM-specific name is that existing scripts need
document.createElement and other functions based on the document binding.
To reduce the overhead of rewriting existing libraries, this convention has been
used. Also, the binding name document is generic. The document objects provides

30

Script type onRender onSubmit onSave Wikitext2

Script expression yes no no no
Script reference yes yes yes N/A
Exernal script nodes yes yes yes no
Script resource yes yes yes no
Form elements no yes no yes

Table 4.2: Characteristics of elements introduced by the scripting module

a getContext() method which will return a context object depending on where
the

4.8 Bindings and context available to scripts

The objects and methods available to different scripts are listed in the Appendix.
Those bindings provide the user with methods to manipulate the WOM, to write
log messages, to get read-only and writable transactions etc.

4.8.1 Context of script expressions

The object returned via document.getContext() has less methods (called func-
tions in JavaScript) than external scripts or interactive scripting. This is due to
the concept that script expressions should not contain complex code. Instead,
what is expected is one expression statement only. A resource is present for the
context.

4.8.2 Context of external scripts

The context of external scripts may get the context resourcce, perform operations
on the document (e.g. createElement). And may do more sophisticated operations
such as getting the current transaction, getting the a list of tables and others.

Scripts in onRender cannot get a writable transaction, as otherwise each page
load might create a new commit.

When a form is submitted, the onRender method has access to getting the form
name, all form values and the button which has been submitted. This is to allow
more than one form per resource and also more than one button per form.

2may contain Wiki markup?

31

4.8.3 Context for interactive scripting (”CLI”)

The interactive scripting context differs from the script expression and external
script context in the absence of a context resource. Apart from that, it has almost
the same potential as the external script context.

4.9 Simple syntax

End-user programming (cf. 3.1) suggests a very simple syntax

(e.g. click(”buttonname”);).

The Sweble scripting module in this work encourages the use of libraries, which
are developed in any script langugages supported by the Sweble scripting mod-
ule. For example, it is possible to use a Phyton library for a JavaScript snippet.
Libraries defined inside the Sweble scripting module are recommended to be well
documented (e.g. source code and documentation embedded inside a Wiki art-
icle resource). Due to the nature as Wiki article resource with syntax-highlighted
script snippets inside, the documentation is available for all end-users and always
up to date. Doubts in the documentation may be corrected instantaneously. The
idea is to use a “subsection” of the Wiki (e.g. namespace or “folder”) as script re-
pository with script libraries which might be useful for the specific Wiki domain.
Therefore, a Wiki can use a set of libraries which define a domain-specific language
for the most common cases of that Wiki. Alternatively, it would be possible to
implement all possible end-user functions inside the API of the ScriptingContext
available to all scripts. However, the simple syntax would go hand in hand with
a lot of of globally defined functions for specific domain tasks (e.g. adding a table
row from a submitted form), which “pollutes” the global namespace (cf. Herman
and Tobin-Hochstadt, 2011). This is an disadvantage for library developers who
might need to prefix their function names, which makes those function names
less usable for end-users. Therefore, loading the required script libraries which
then defined end-user suited functions increases the flexibility and the usability.

JQuery-like syntax

JQuery is a framework or library to reduce verbosity of JavaScript and to make
coding more concise. JQuery works heavily with CSS-inspired selectors to op-
erate on sets of elements. In JavaScript, especially in early versions of JavaS-
criptaccessing and manipulating sets of elements requires a loop and additional
variable assignments, which is cumbersome (cf. Freeman, 2013). While jQuery is
not directly useable, a jQuery-like syntax can be used when using libraries.

32

Example for an external script:

var ctx = document.getContext();

$(ctx.getDivs(element)).forEach(function(node) {

document.log(document.getTextContent(node));

});

In this example, the function $ converts the Java list to a JavaScript array which is
a functionality provided by a referenced external script library. A sample resource
with this code can be found when starting the Sweble Wiki with the scripting
module in debug mode. forEach is a default construct of JavaScript(cf. p. 132,
Resig and Bibeault, 2013).

4.10 Script repositories

The target group of scripting is not necessarily the end-user due to complexities
of the Java WOM API which needs transparent handling of round-trip data and
text nodes to improve user acceptance. However, the end-user can greatly benefit
from collaboratively created script repositories by more experienced developers
which are tailored for specific problems. Those libraries can be embedded due
to the external script concept used with a single script reference without code.
In fact, adding this script reference can be handled by a wizard developed using
the form elements and script nodes of the Sweble scripting module. This wizard
would let the user decide on which resource the reference is to be added and if
needed might add code to address only one out of many elements on the page
(e.g. ordered or unordered lists, tables etc.). This is the principle of no coding
discussed in section 3.1. Adding script references to a page by scripts is possible
due to the expressiveness of the WOM. Alternatively, those libraries can be added
by a programming by demonstration tool which observe the actions of a user and
use libraries to keep the generated code readable.

In contrast to copy & pasting from other websites, using libraries inside a Wiki
are more trustworthy due to collaborative checking and can be expected to do
the desired work which is not the case with script snippets originating from
blogs, forums and other web pages. Also due to domain knowledge, those WOM
manipulations can be more spezialized and contain documentation that is more
helpful for the end-user.

33

Require modules

While end-user development focusses on simplicity for the end-user, experienced
developers have other goals, such as reusability and maintainability. This can be
achieved by a modular software design and dynamic loading of dependencies. A
common approach is the require() mechanism(cf. Herman and Tobin-Hochstadt,
2011), which is not supported by the scripting module natively as it can be
embedded with little effort

A require machanism is not supported by the scripting module natively as the
implementation would be dependent on specific script languages. However, such
a module may be implemented using a script library. The library can call the
getCode() method of the required script resource to get the code as String. This
code can be passed to eval(). To avoid duplicate code loading, this script needs
to keep a list of all referenced scripts

4.11 Permissions

Executing untrusted code and giving users access to the script logging or the inter-
active scripting is problematic. Users might get access to details which might be
used to compromise the system. Therefore, the Sweble scripting module defines
the following permissions:

• P SCRIPT SIGNER: The user is allowed to sign scripts. This means that
scripts created or modified by the respective user will be evaluated by all
users accessing the resource.

• P BLOCK SCRIPTS: The user is allowed to block scripts.

• P UNBLOCK SCRIPTS: The user is allowed to unblock scripts.

• P SHOW SCRIPT LOGGER: The user is allowed to view and use the script-
ing logger page.

• P INTERACTIVE SCRIPTING: The user is allowed to view and use the in-
teractive scripting feature.

4.12 End-user tools

The scripting and form mechanism is a feature for the Sweble wiki, but it is not
directly visible on pages itself unless its features get used on resources, e.g. in
forms. However, two Wicket pages have been created where users can evaluate

34

Figure 4.1: Screenshot of the interactive scripting page in the Sweble wiki
provided by the Sweble scripting module.

own script (interactive scripting) and may debug pages with errors. These are
the two points of contacts with the end user. Moreover, script resources also have
their own user interface which is similar the UI of the article resource with the
text fields evaluation time and script language (type).

4.12.1 Interactive scripting

Interactive scripting allows entering script snippets and evaluate them “on-the-
fly” by pressing the “Evaluate” button. The result is immediately returned and
potential error messages are returned. The page allows choosing the script lan-
guage from all available script languages. Also, it is possible to display a history
of all evaluated script snippets (e.g. to compare different codes or algorithms).

Such an interactive console is known by many programming languages. Also,
modern browsers mostly have a web console, where JavaScript code can be ex-
ecuted and thus read or manipulate the state of the DOM. The same is possible
with the interactive scripting console, which has a menu item in the Sweble wiki
when activated. The result of the interactive script input is directly displayed
if applicable. Potential exceptions are displayed and enqueued in the history of
the interactive scripting console to compare new evaluation results with previous
results. This functionality is common for interactive consoles in browsers (e.g.
Firefox 383 or Chrome 334) and for many programming languages. A user priv-
ilege is required for using the interactive scripting feature, as persistent manipu-

3cf. https://www.mozilla.org/en-US/firefox/new/ - last visited on 7 July, 2015
4cf. www.google.com/chrome/ - last visited on 7 July, 2015

35

Figure 4.2: Screenshot of the script logging protocol page in the Sweble wiki
provided by the Sweble scripting module.

lations might modify the Wiki’s state in an undesired way if no authentication is
performed.

4.12.2 Script logging

The log messages created by individual scripts can be displayed to the end user
with the adequate permission to view the script log. All debug, warning and
error messages of the scripting module are annotated with the path (i.e. WRI of
the accessed resource), with the date and time and also with tags. Those tags
help to filter only relevant messages. This is necessary, as this specific log is not
supposed for the administrator, but for the end user. While the administrator log
is usally in text form and can be filtered with commands such as grep on Linux
system, the end user has not the tools at hand (i.e. command line filtering)
nor the knowledge to filter himself. Therefore, a filtering mechanism has been
implemented to select which tags should be included in or excluded from the
result set. Also, filtering by path (i.e. WRI) and date/time is possible.

A selection of tags used by the scripting module and displayed by the script logger
are described in the following:

• expression: logging is about script expressions (e.g. an error in a script
expression)

• external: logging is about an external script

• before: logging occured during evaluationTime before

• after: logging occured during evaluationTime after

• no-onRender: no onRender function is defined in the script

• not-found: the referenced resource was not found

36

• stacktrace: a stacktrace of an error (displayed without new lines to have
one log message per line)

The script logging can be opened via the link “Script protocols” under settings
and opens a Wicket page. Apart from filtering, also emptying the log messages is
a supported operation for the user.

4.13 Sweble module vs. scripting

When new functionality is to be implemented, it can be done as a module for the
Sweble wiki in Java. Alternatively, it may be implemented in a scripting language
of the choice of the user - provided that it has been enabled by the administrator
of the Sweble wiki.

Sweble module

For administrator-driven or developer-driven features implementation as a Sweble
module in Java is favorable. Java modules can be easily deployed and can harness
the full expressiveness of the Sweble wiki. A powerful IDE such as eclipse can be
used for creating Sweble modules. Git or SVN can be used directly for version
control of Java Sweble modules while WOM data stored in databases can only
be subject to version control when this feature has been implemented in Sweble
wiki. Also, Maven can be used for development in Java and, for instance, resolve
dependencies to other projects. All these features of using an IDE are not directly
usable when using a scripting language, unless these features are included into
the Sweble wiki.

Scripting

Simple applications based on forms to edit specific information represented in
resources such as articles are more convenient to implement using a script lan-
guage, as any user with sufficient privileges can contribute to the creation and
improvement of these scripts. Based on own observations current wikis such as
Wikipedia 5 share mostly knowledge and to some extent images with Wikime-
dia Commons6. Enriching the concept of Wikipedia, the script markup and the
script resource can be used to share code and collaboratively create small and
well-defined script applications and helper tools, which will be explained in the

5cf. https://www.wikipedia.org/ (last visited: 09/07/2015)
6cf. https://commons.wikimedia.org/ (last visited: 09/07/2015)

37

next paragraph. Especially the fact that code can be evaluated and be displayed
(external-script) on the same page makes it easier to demonstrate code in-place
and thus is a foundation for a collaborative repository for simple scripts (e.g.
simple sort algorithms).

Helper tools in this context are Wiki resources which contain instructions and a
UI optimized by the end-user for the end user. These pages and the forms on
these resources can be the starting point to trigger simple WOM modifications
or using the refactoring mechanism provided by Sweble. Therefore, the scripting
module may serve as a tool for wiring features of the Sweble wiki which are not
directly accessible to the end-user. This is similar to wiring as done in Unix shell
scripts (cf. 3.3)

The general advantage of scripting is speed of development which allows rapid
prototyping. Using many prototyping cycles with the Sweble wiki is time-consuming
on slower computers, as the time required for re-compiling all Java code and ex-
ecuting it, loading the Guice modules and starting the web server takes more
time than entering code in the interactive scripting page and pressing “Evalu-
ate”. Also, the history of the last evaluated codes can help to try out and evaluate
several potential solutions in a trial and error approach.

However, as anybody might edit scripts, security checks are in place which reduce
the possibilities of what can be done with a script to avoid malicious use.

38

5 Comparative evaluation of the
Sweble Scripting module with
PHP

In the following, the Sweble scripting module will be compared with the well-
known web scripting language PHP along several dimensions, including readabil-
ity, ease-of-use and evolvability.

5.1 Readability

First of all, writing readable scripts is possible with both PHP and Sweble’s
JavaScript module. It is up to the developer to separate different concerns and to
document code readably. However, PHP makes it easy and efficient to program
“quick and dirty”. Having the controller, model and view (i.e. the HTML page
with PHP snippets in one page) is possible and very convenient at the first glance.
Only if the programmer uses a web framework or uses one’s own convention of
separation of concerns readable and manageable code is possible. That means,
per se PHP is not designed to be give readable scripts. In combination with some
inconsistent conventions in PHP (e.g. order of parameters), sophisticated scripts
are hard to read. Also, reusable code requires the use of several files which need
to be loaded and parsed for each page request (if no PHP opcode cache is used).
Therefore, for optimization purposes, having logic and the view in one file gives a
performance benefit, which leads to situations where well-designed scripts require
custom caching mechanisms which are not provided by PHP itself to run.

Within the Sweble environment, the way to add scripts supports to use widely ac-
cepted design patterns. While using script expressions are possible to avoid com-
plicated and not easily readable code snippets to set the content of a placeholder,
the primary approach for adding scripting is by referencing external scripts.

39

5.2 Ease-of-use

Simple PHP snippets and Sweble’s scripting expressions are easy to use. Using a
reference or example code, it is a matter of copy and paste to implement simple
scripts.

Manipulating the WOM tree, however, requires a basic understanding of the
underlying tree data structures to understand the effects well. However, due
to automatic escaping inside Sweble, assessing the ease-of-use to create secure
resources that are not vulnerable to XSS (cross site scripting) attacks, this is
certainly easier with Sweble. With Sweble’s scripting module, properly escaped
input and output comes out of the box and requires no custom coding. On the
other hand, to achieve the same result with PHP, a notion of where the printed
text is placed is obligatory. Therefore, with PHP it is necessary to understand es-
caping rules to figure out why a specific text is not displayed when no escaping is
performed (e.g. <). For example, an HTML/XML attribute value needs different
escaping than the text content within an HTML/XML element. Therefore, while
adding some understandable complexity on the side of the structural represent-
ation of the WOM, it comes with the benefit of security and correct display out
of the box.

The naive scripting language approach within the Sweble Wiki cannot compete
with other templating languages such as PHP. Writing simple functionality is
way more cumbersome compared to the templating approach used in PHP and
many other web frameworks. For the end user developer, a wide knowledge and
understanding of the WOM is required to be able to write simple applications.
Simple placeholders such as mathematical computations, however, are as simple
to express as in templating languages.

5.3 Reusability

The advantage of a Wiki environment is that code inside the Wiki by trusted
users may be reused. While copy and pasting scripts from the web for program-
ming in PHP and similar languages comes with the risk that there are security
problems, especially wikis with many users and many code reviewer can provided
and maintain code libraries which are reused on many pages. Fixing security
problems centrally or improving functionality can therefore be done by updating
the library as code can be embedded by just referencing an external script, which
works with a generic set of pages. An example for such a generic mechanism
is the script “cake planner” (see Appendix) which handles form submissions by
automatically detecting in which table cell a specific form field is to be inserted.

40

Generic nature

Manipulating the WOM without a templating language is significantly more dif-
ficult for end-user programmers due to the need to understand the underlying
concepts, but it allows more generic manipulations.

Templating languages tend to be more explicitly programmed than scripts which
manipulate the WOM. Based on the nodes encountered, specific events are triggered
inside the code, manipulating the state accordingly. Manipulating the WOM/-
DOM is able to yield more loosely coupled code that can be packed in libraries
which can be reused. This is advantageous because the same experienced pro-
grammers can write libraries which can be simply reused also by inexperienced
programmers, thus reducing the scripting effort solely to configuration. This
helps for end-user programming as users can simply combine existing scripts
from repositories to achieve the desired effect. However, the readability and un-
derstandability of having templates (similar to Wicket templates) would reduce
the effort of coding significantly. Coding libraries therefore is relatively complex
for end-users while using libraries tailored specifically for a certain domain prob-
lem can be done by embedding a script reference. To further ease the task of
embedding tools or libraries (e.g. cake planner, see Appendix), an alternative
approach of deployment is to create a deployment article resource which lets the
user enter or select the WRI an article and then can choose for which element on
the page the tool should be used. Then, the inclusion of script references may be
handled by the deployment article resource, as it can fetch the resource, modify it
accordingly and therefore gives the end-user the possibility to add functionality
without any coding. This approach without coding is, as discussed in section
3.1 well-suited for end-user interaction and therefore a clear advantage over web
programming languages which do not support that (e.g. PHP).

5.4 Performance

Performance considerations and evolvability are strongly interconnected. When
maintainability, readability and evolvability comes with poor performance, many
developers will favor the performant approach and ignore good software design
standards.

Sweble’s scripting module also allows for functions/methods to be called upon
initialization. This initialization may be relatively complex as it is done only
once and there.

Also, due to script caching as bytecode, there is no need for dirty and efficient
implementations. Instead, frequently used scripts will reside mostly inside the

41

script cache and thus cause little or no overhead for execution. Also, some script
methods are called only on specific events, such as onSubmit and onSave. Invoking
functions on specific events with raw PHP is not natively by PHP. Therefore, due
to domain knowledge of possible operations on articles or other resources, script
evaluation is only triggered when really necessary.

5.5 Caching

With well-known script expressions and domain knowledge of when scripts are to
be called, it is possible to use fine-granular caching with expiry dates of cached
items. For example, an expression yielding the year can be cached until the
end of the year. This allows performing some potentially heavy computations
beforehand and to use a hierarchy of caches based on the frequency of when cached
items change. A downside of storing a WOM/DOM on the server-side is that the
performance without caching is poor, as the resource rendering process needs to
be performed on each page access, transforming the abstract representation into
the target representation.

5.6 Evolvability

The performance benefits discussed in the previous section encourage tailoring
scripts to specific actions and to use an event-based approach. Event-based pro-
gramming with listeners is good programming practice and makes software more
evolvable. Other scripts may simply define one more listener which will be called
as well. This kind of “hooking” to custom actions is not part of PHP (even
though this functionality itself may be implemented by a framework) and thus
not natively supported.

However, occasionally, refactoring HTML templates is necessary, e.g. to adapt
elements to new HTML standards, such as the abandoned XHTML 2.0 standard.
XHTML 2.0 was significantly different from the previous HTML versions, which
implies that to conform with the standard, all or most pages need to refactor
there HTML code base. In this case, refactoring the templates can only be done
manually which is very error-prone task. If elements were addressable by tag
name and could be manipulated with a simple generic script, such a shift of
HTML would require only little extra work to get compliant. However, almost all
templating languages which are widely used (except XSLT) do not use the tree
structure at hand and thus the of sophisticated refactoring is hard or impossible.
Also, due to the arbitrary text placeholders, telling all the classnames or IDs
that may be produced out of a template is not possible. This might be handy

42

for example, to minify the CSS in combination with the HTML classnames. The
only workaround is to tidy the HTML after rendering (as Wikimedia does) and
apply transformations on rendered pages before they are sent back to the client.
However, this is an unnecessary indirection.

Apache Wicket uses also HTML so that no string concatenation is taking place.
Instead, the HTML data structure can be parsed and is modified by Wicket it-
self to add attributes and content to components based on the models provided
to Wicket. This approach of using machine-processable data structures is favor-
able, as it allows for refactoring of code e.g. to adapt a new HTML standard as
described in the previous paragraph.

Refactoring of PHP is not possible, unless conventions are used. This is because
inside PHP snippets, the surrounding HTML element tags may be closed and
opened arbitrarily. A convention that allows for refactoring is to never print
HTML tags themselves with PHP’s print or echo statement and instead using
HTML outside of PHP tags.

AngularJS uses a DOM-based templating system similar to Apache Wicket, where
it extends HTML by attributes for server-side processing (cf. Jain, Mangal and
Mehta, 2015). Therefore, the problem of potentially invalid HTML/XML and XSS
attacks is catered for by the framework. Instead of “string concatenation” like in
PHP, the HTML and its DOM representation serve as a domain-specific language
(DSL) which ensures the document is valid and well-formed, to speak in XML
terminology. AngularJS is JavaScript-based.

The JVM language Scala also does not need to resort to string concatenation to
produce valid XML output. With native XML support provided by Scala, it can
operate with XML objects as “first class citizen” (cf. Narmontas and Fancellu,
2014). Therefore, one can create and read from XML data structures without
coding. This guarantees valid XML if that XML library used correctly. Scala
will also take care about correct XML escaping, thus avoiding classical security
threats such as XSS attacks. Scala is a JVM language and therefore available as
scripting language in the Java Scripting API. Due to its XML support and the
fact that WOM is also represented as XML, Scala is a very suitable language for
scripting.

With the library approach that has been suggested under Methods in section 4,
improvements and security flaws can be fixed centrally. As no copy and paste
from web resources or forums needs to be done for the scripting module, but only
generic external scripts need to be referenced, improvements in algorithms can
be centrally reflected. Also, code reuse can be on a fine-granular level as due to
bytecode caching, performance does not suffer when using huge libraries, which
gives one more incentive for code reuse which helps evolvability. That means
that due to the possibilty of having libraries, those libraries can be improved and

43

developed further without having to go to individual resources referencing them.

As discussed in section 4.10, also using mechanisms like require is possible when
defining appropriate libraries, which allow maintainable and modular scripts
through dynamic loading (cf. Herman and Tobin-Hochstadt, 2011).

5.7 Debugging tools

PHP scripts can be debugged reliably only using the error log, because some fatal
errors. Even though there is a way to display error messages to the screen when
opening the script via its URL, this is not reliable as some errors simply stop
script execution (cf. Cholakov, 2008). In contrast, the scripting module provides
logging with a script log protocol with features such as filtering by WRI, type
of error or message, date etc. The script log protocol is directly accessible via
the Sweble Wiki navigation and can use. Therefore, debugging script problems
with the Sweble scripting module has been designed more end-user friendly than
debugging PHP scripts.

5.8 Security

Despite the poor performance in terms of usability, operations on the WOM have
guaranteed properties. One of these properties is that the generated HTML or
XML is always valid, which is not the case in PHP. Requirement for that property
is that the implementation of the Sweble Wiki is correct, which shall be assumed
in this context. Therefore, “breaking out” of the HTML/XML element tag is not
possible. This is comparable to a DSL, which also such as XSLT (cf. section 2.5)
has a limited expressiveness, but in turn guaranteed properties such as a valid
XML. Most template languages which provide no mechanism to automatically
escape user content may have vulnerabilities which can be exploited. The lack
in input validation that allows XSS (cf. section 7.8) is also the cause of other
vulnerabilities such as SQL injection. In the Sweble Wiki, direct database access
is not possible for scripts. Access to resources is possible only via the abstraction
layers provided by the Sweble Wiki to the end user scripts. Therefore, the current
implementation of the Sweble Wiki is not vulnerable to the XSS and SQL injection
exploits.

The Sweble module protects the integrity and confidentiality of information by
giving scripts only access to data which is a user has access to in the current
transaction. Therefore, handling access policies is catered for by the Sweble
engine.

44

5.9 Versatility

Still, PHP is currently much more versatile than the Sweble scripting module
JavaScript of this implementation. This is due to the limitation, that no database
direct or low level support, image rendering and other features are supported. On
the other hand, when abstract database or image rendering support (e.g. vector
graphics to PNG/JPG) is added to Sweble, then the programmer does not need
to worry about the specific database which is used as this is taken care of by the
Sweble framework.

5.10 Direct comparison with PHP

Several concrete problems of PHP have been discussed in section 3.2.1. Those
problems where used as a guideline for creating the Sweble Wiki engine.

Especially the problem that clean code (e.g. object orientation) is at a disad-
vantage in terms of performance is a problem which is addressed by the Sweble
scripting module in this work by providing caching of compiled scripts.

The problem of multiple functions and aliases for very similar purposes has been
addressed by providing an unform document binding. Also, the naming conven-
tion in the Sweble scripting uses the Java naming convention and is therefore
more intuitive than PHP with its mix of C-flavored function names, the incon-
sequent use of underscores in function names and others. Also, the Sweble Wiki
currently does not provide low-level access to database functions. Instead, data
can be retrieved from Wiki resources. Future implementations might provide
data access without the risk of SQL injections.

Also, while PHP lacks native support for events, the Sweble Scripting module is
based on events. onRender, onSubmit and onSave are high-level events which do
not exist in PHP in a comparable way.

45

6 Design

6.1 Scripting module

The scripting module has been defined as a logically separate module that can
be included or removed in the Sweble Wiki via configuration.

There are several configuration options such as disabling scripting features which
are enabled by default. The administrator might do so for debugging or to speed
up script evaluation as computational steps can be skipped. For example, script
expressions, the before/after/intermediate evaluation time and the onSave event
can be skipped. Also, several debugging messages can be enabled if an adminis-
trator and developer wants to do debug the scripting module. The configuration
also handles cases whether to execute scripts of specific users.

The <script eval="server" attribute is optional, but to avoid confusion with
client-side it is advisable to use it whenever possible.

6.2 Events of script invocations

As briefly introduced in section 4.1, these events might trigger script evaluation
in the context of a Wiki system

• onRender (i.e. external scripts or script expressions while rendering a re-
source)

• onSave (i.e. external scripts evaluated when saving a resource with the
resource editor)

• onSubmit (i.e. external scripts evaluated when submitting a form on a
resource)

• and potentially some currently unimplemented events such as onTimerEvent
for regular tasks

46

Whenever a event occurs (e.g. onRender when rendering a resource, onSubmit
when submitting a form on a resource), the resource is traversed by a visitor.
This resource will also be used as context resource for the script. The collection
of script references with matching evaluationTimes is done for all three evaluation-
Times (except for the onSave event). First, all the scripts are evaluated and next
the respective function e.g. onRender is called. In case of onRender, also the script
expressions will be evaluated and the result with replace the script expression.

6.3 ”String concatenation” vs. DOM/WOM ma-

nipulation

In the ecosystem of WOM, a tree-based (or XML-representable) data structure
already exists. Thus, instead of adding scripting functionality to allow for yet
another templating language such as PHP, the decision was to use a scripting
language to manipulate the WOM. The WOM can be manipulated persistently or
per session. This has been implemented by using an event-based DOM modifica-
tion. Several events are listend to: onRender, onSubmit and potentially in future
implementations onTimerEvent.

Advantages

There are numerous advantages of using DOM/WOM manipulation over templat-
ing with languages like PHP where the represented data is not extractable. The
advantages are based on the semantic representation which is the achievement
of the Sweble engine and enables several applications of the Scripting module.
Those potentials will be described in the following:

The semantic web is an attempt to represent information on the web also in a
machine-readable and in a machine-processable representation. Many traditional
website are only intended for human use and not for machine use. Sometimes
it is not even desirable to be usable by machines to control the data within
the website and avoid 3rd party applications to make use of the information
on a specific website. One requirement of semantically annotated websites and
thus for the semantic web is to have structured documents and to know what
information is represented by the data on the website. The WOM is a structured
representation of the information in a wiki which can be the basis for a semantic
web application which creates additional value with the information present in
the wiki.

A derivative of semantic web technologies in the wiki ecosystem are semantic wi-

47

kis. Semantic wikis make excessive use of annotation to make information more
searchable and retrievable by intelligent agents which answer queries by humans
or other machines against the information in a wiki. A WOM/DOM represent-
ation makes it easy to utilize the advantages of semantic data as information
extraction can be done directly without a previous parsing step. Therefore, even
simple applications implemented with the Scripting module of this work can run
semantic queries against the wiki.

However, it should be noted that the current wiki implementation does not
provide tools to semantically annotate data (e.g. date, price, number, coun-
try name) as semantic wikis do. The purpose of this section is only to discuss
the advantages of the WOM manipulation for potential future semantic features
of the Sweble wiki.

Disadvantages

The disadvantage of having a WOM/DOM representation as the internal data
representation is that performance suffers considerably in naive implementations.
For each page rendering, the WOM representation has to be transformed to an
HTML page. However, one may use the context knowledge to implement an
efficient caching mechanism or a caching hierarchy to improve performance. This
caching mechanism can outperform traditional templating approaches, as they
mostly have no clear knowledge of when the value rendered into a template will
expire and thus all script snippets inside a template are evaluated equally on
each page load. Therefore, the WOM/DOM implementation in combination with
annotation for caching can be improved in performance significantly.

Also, manipulating pages via the WOM requires considerably more code than a
templating approach.

Conclusion

The advantage of templating with content-aware templating systems as the one
used by Wicket greatly reduce the complexity of code required for performing
WOM manipulation options. Therefore, to use both the advantages of the WOM
and its semantic data and templating should be provided. To do so, a templating
language for the WOM can be created inspired by the templating done in Wicket.

48

6.4 JavaScript as main scripting language for

Sweble

I decided to use JavaScript as primary scripting language for several reasons. First
of all, JavaScript may be considered as the lingua franca of the client-side script-
ing. Therefore, JavaScript is known by many people who have contact with simple
web development tasks. Using a language that the end-user is probably aware
of or if not, is likely to use again in another context such as private blogs, can
increase acceptance of the scripting language. Secondly, JavaScript is considered
the default scripting language of the Java Scripting API, which demonstrates its
importance as scripting language.

JavaScript offers object orientation and inheritance by prototypes and prototype
inheritance which gives developers the tools to develop more sophisticated ap-
plications with it (cf. p. 150, Resig and Bibeault, 2013). With it functional
programming approach, JavaScript also offers closures (i.e. the scope created
when declaring a function), partially applying functions and extending the lan-
guage which features such as map (cf. p. 92, Resig and Bibeault, 2013). In case
of the scripting module, the language can be extended by referencing external
script libraries. Due to the success of JavaScript success on the web, it has been
continuously improved while missing functionality for older browsers can be ad-
ded by libraries. The advantage of server-side JavaScript is that cross-browser
support issues do not exist as code is only executed on the server. For example,
the function (method) forEach can be called on an array, passing a function as
argument which is called for each element of the array (cf. p. 132, Resig and
Bibeault, 2013).

Furthermore, JavaScript on the server-side is frequently used to validate input
before entering it into the database. In our context, the database is the WOM
itself, as it has tables, lists and other elements to store structured data. The trend
goes to adding the validation on the client-side as well to increase responsiveness.
For example, when the user enters a wrong value, the input field itself may
change its color to red and a warning message might appear. In a conventional
environment, the user might learn about this error only once the form has been
submitted. In productive environments, a CAPTCHA may be embedded as well
to avoid spam and fake submission and such a CAPTCHA challenge needs to
be solved again on every attempt to submit that form. After several attempts,
entering a CAPTCHA again and again might lead to frustration and cause the
user to give up. Therefore, most web forms nowadays try to warn while entering
data, which needs duplication of validation code on the client and on the server
side. This is extra work and error-prone, as what is said to be valid on the client
side should not return an error after submitting the form to the server and vice

49

Figure 6.1: The script processing pipeline with the evaluation times “before”,
“intermediate” and “after”.

versa. JavaScript gives the opportunity to reuse validation code on the server side
as well as on the client side and thus saves work and avoids unexpected behavior.

6.5 Evaluation time

As figure 6.1 demonstrates, the rendering pipeline works as described here: The
database holds the WOM representation of a resource which might be stored in
memory for caching purposes. As several page accesses might use this WOM
representation simultaneously, the WOM document is read-only. Some scripts
might have the need to perform operations at this stage (called evaluation time
before in this Scripting module). If a script for evaluation time before exists,
then the constant WOM is cloned and the copy may be modified by the script.
After this step, the WOM is made read-only.

The next stage in the pre-render visitation pipeline is the PreRenderVisitor . The
PreRenderVisitor always receives a constant WOM resource either from the data-
base or the cache or from the evaluation time before scripts. Due to the stacked
visitor concept, modifying the nodes by scripts as soon as they are processed leads
to a behavior which is hard to predict as some nodes are already processed while
others are not. Therefore, scripts running during the PreRenderVisitor stacked
visitor processing are required to be side effect free and therefore may not modify
the WOM. However, they may return a value (e.g. a String, a number or any
Wom3 (i.e. WOM version 3) element potentially with children. If the value is
a Wom3 element, it replaces the script reference node and this sub tree gets
processed again by the stacked visitor.

The final stage is the processing of scripts at evaluation time after. Those scripts
operate with the result tree which is not shared and not cached and therefore may
be modified freely. As the visitation is already finished at this stage, nodes are
not redispatched or processed further. Returning a value will replace the script
reference or expression node by the returned value. If no value is returned, then
the script reference of script expression node will by removed.

50

Other scripts are evaluated on the same context with the bindings of the previous,
in the order they are placed on a page. Different Wiki resources use different
contexts. Also, script evaluations of different users will always use their own
script context. The order of script execution depends on the order of the script
references; it does not depend on the order how external-script node are placed.

6.6 Execution model

Several concepts have been introduced to allow for managing the scripts created
by Wiki users. Scripts are automatically signed by creating an hash over the
string content of the script. This script signature is placed as an attribute of the
WOM script, together with the last user who modified the script. To evaluate
scripts, the last editing user of the script needs to be authorized to create or
modify scripts (cf. section 4.5). A hash code computed over the code of a script
or the reference of a script reference and stored as an attribute of the script.
When saving a page with scripts, this code hash is compared with the hashed
new code which might be potentially edited. If there is a hash mismatch, then
the last user attribute of the script is changed to the current user. When the
script is not signed by an authorized user, an error is thrown.

An alternative approach is to evaluated the last signed script (i.e. go back to
the last commit version of a resource where the script is signed by an authorized
user). However, this might result in a situation that a script is evaluated on a
resource which has a different structure than the one the script was originally de-
signed for. Therefore, evaluating the last signed script might go along undesirable
consequences.

Other concepts that have been implemented is blocking a script by adding an
attribute to the script that only a user with unblocking privileges may remove
again.

6.7 Script logging

End-user scripts do not use the default logger of Sweble, but a custom logger
which may be opened by privileged users. This logging mechanism is using tags
to help end-users filter log messages.

The filtering is implemented in the classes implementing the FilterConstraints and
FilterConstraint interface. A FilterConstraint is a Object value combined with a
type (e.g. WRI, date, tag). The filter shown on the Script protocol page of the
Sweble Wiki can be set by the user and is then transformed to a collection of

51

FilterConstraint, i.e. FilterConstraints. When rendering the log messages, a check
is performed if the filter criterion is matched and if not, the item is not displayed.

52

7 Implementation

7.1 Sweble module

The scripting module can define its own

• WOM nodes,

• create menu items,

• custom media types and media type definitions,

• custom permissions and permission groups,

• PreRenderVisitors,

• PreSaveVisitors,

• PreRenderHtmlVisitors,

• custom tag extensions,

• resource transformers and

• it can mount custom pages for the navigation bar of the Sweble wiki.

7.2 Sweble Wiki

The Sweble Wiki stores WOM represents the state of the Wiki and its resource.
This approach is not common in the CMS and Wiki environment and will be
explained in this section.

7.2.1 Resources

Originally, the WOM represented only article resources. Recent changes in the
Sweble Wiki implementation allowed resources. Examples for resources are art-

53

icle resources, raster or vector graphic image resources, type resources or script
resources. Dohrn and Riehle, 2013 demonstrate how XSLT based templates can
perform refactorings on wiki articles. Since the wider notion of resources exists,
any type of resources may be subject to content refactorings. While transform-
ation with XSLT are ideal for skilled developers due to the complexity of XSLT,
programmatic approaches might be more reasonable for simple transformations
which can be permanent or temporary. The Sweble scripting module gives the
tools for programmatic manipulation of the WOM. All resource types can or
might be manipulated by scripts when tools for manipulation are provided by
the Sweble engine or its modules.

7.2.2 Transformation and presentation of resources

Each resource is represented by a WOM3 data structure. Depending on the
desired presentation type, there are different transformations. For example, an
article resource may be transformed to a LaTex file to be transformed to a PDF
file in the next step. An article resource may also be represented as a static HTML
file. For both LaTex/PDF rendering and static HTML file rendering, Wicket does
not appear at all in the rendering process.

The idea of the transformation approach of the Sweble Wiki is that there is just
one central representation for any type of data (raster graphic, vector graphic,
scripting resource, article resource), which is all internally represented or repres-
entable as the WOM XML data structure. The transformation works by providing
a source with its media type and a target media type. Then, if such a transform-
ation is implemented, the source will be transformed to the target type. The
media types to which one might want to export are XML Wikitext, to HTML, to
PDF to image etc.

7.2.3 Transformation of Wikitext to internal representa-
tions

As mentioned before, the WOM represents all elements. To do so, the Wikitext is
transformed into internal representations.

Tag extension

HTML/XML are supported by Sweble wiki as well as tag extensions. The differ-
ence of Sweble’s XML elements (Wom3Element) to tag extensions is that markup
inside tag extensions is ignored and remains there as string, while content inside

54

Wom3Elements is parsed and markup is fully interpreted. Therefore, whenever
the text content of a node is a different media type such as code, a tag extension
is used.

Tag extensions have been used <external-script> or for script expressions.

Tag extensions are a Wikitext specific phenomenon. However, also other wiki
markup languages can be supported in future versions of Sweble Wiki; then these
concepts may have a different name. The scripting module can be integrated to
these markup languages easily as well. The only thing that the markup needs
to provide are pedants of the Wom3Element and unparsed/unprocessed content
similar to tag extensions.

XML nodes

XML/HTML markup is used to represent forms and form elements and script
references.

This markup is transformed into a Sweble Wiki representation e.g. S2weButton
in the case of a button. This representation in turn will be used by the Render-
HtmlFormVisitor, a subclass of the RenderHtmlVisitorBase. It adds visit methods
for the form elements defined by the scripting module.

7.3 Markup generation

RenderHtmlFormVisitor extends the RenderHtmlVisitorBase which prints HTML
code whenever any form element (i.e. implementing S2weFormElement) handled
by the RenderHtmlFormVisitor is encountered. For annotating the markup for
further processing by Wicket, the generated HTML uses Wicket attributes with
the Wicket namespace. The generated HTML is not passed directly by the server
to the client, but parsed by Wicket and the Wicket components are re-rendered
by Wicket and enriched with several attributes.

7.4 Forms and form elements

The onSubmit functionality is encapsulated in the custom Wicket form Wicket-
ScriptingForm. As Wicket forms may be serialized, the state hold by this form
needs to be minimal. Therefore, inside this WicketScriptingForm no references to
the transaction system or the scripting module for some configuration parameters

55

is made. Instead, those variables are populated on runtime with the objects by
the injector.

Attribute value verification

To ensure integrity of attributes, the Sweble engine provides an attribute verific-
ation mechanism which is used also by the scripting module.

VerifyScriptTypeFn is a mechanism that ensures that the script type always starts
with application/*, where the asterix is a placeholder for the respective script
language name.

Another mechanism to verify the attribute value for its integrity is WRIStringVeri-
fyFn. It ensures that an entered WRI string is syntactically correct.

The application/javscript type is inspired by Thunderbird and Firefox apps,
which use this syntax to mark scripts that have the privilege to access its powerful
API. Moreover, it is the default media type defined by the W3C (cf. McCarron,
2009).

7.5 ScriptResource

The Sweble Wiki can have custom resources. Article resources are the default
resource type, which was originally the only available resource in Sweble. For
the scripting module, a custom script resource has been added. It allows for the
operations view, edit and export within the Wicket UI and can be referenced by
script tags. That means that instead of an external-script node, a script resource
can be referenced.

The text content of the script resource is the script code to be evaluated. A script
resource can only have code in one specific script language. A script resources
may only contain one script unlike external script nodes which can appear inside
an article several times.

Script language

The script type (i.e. the script language) should be allowed to be any string
starting with application/*. There exist many script languages and for all of them
it is theoretically possible to integrate them by adding the script language to the
Java Scripting API and therefore to the Sweble scripting module. If the script
language was restricted to script languages existing in the current Sweble Wiki,

56

importing dumps from other Wikis with more supported script languages might
throw an error and skip importing. This might leave out some resources only due
to missing scripting languages. One needs to consider that each running instance
of a Sweble wiki might support a set of script languages that do not necessarily
overlap.

Instead, the favoured approach is to allow any script type tag (i.e. allow existing
and potentially new or upcoming scripting languages). If the script type is not
understood by the Sweble engine, an error is thrown in case the script is to be
evaluated.

Sweble Wiki modules can register TransformerFactories. The required Trans-
formerFactories are script to WOM and WOM to script. Each TransformerFactory
defines an accept method for a WOM tansformer source or target which returns
if the TransformerFactory can process the source and target or not. The script
to WOM and vice versa transformations are identity transformations. Other
transformation types are pre save, pre render transformation and resource sum-
marization.

Transformer

The Sweble wiki uses a WOM representation, which is internally represented
as XML. Via this intermediate step a source can be transformed into (almost)
any target representation. For example, wiki markup can be transformed to a
PDF, HTML file or an image. Tranformations can be information-preserving or
not. If they are information-preserving, applying the transformation and then
inverse transformation will generate the original WOM. A script code to WOM
and a WOM to script code transformer have been implemented. Also, a script to
resource summary transformer was required.

UI

ScriptResources have the operations view, edit and export within the Wicket UI
and can be referenced by script tags. That means that instead of an external-
script node, a dedicated script resource can be referenced.

Import

Script resources may be populated from files using the BootstrapFromFlatFiles-
Module by the Sweble module. Currently the mapping of these bootstrap files

57

is done only for .js files. Those files will be mapped to script resources with the
script type (media type) application/javascript. As the scripting module provides
a generic scripting language support, the use of other script languages is possibly
by adding new file names to the BootstrapFromFlatFilesModule.

7.6 Form submissions and markup

A problem of the scripting module and Wicket is that when a resource is rendered
and the form is submitted, the markup is not generated again. This is due to the
binding of Java objects to the markup. Therefore, the modifications by a script
are not reflected directly in the page displayed after submission. To remedy this
situation, a reload of the page is enforced.

7.7 Wicket dependencies

Most of the implementation is not Wicket specific. The points of contact are only
the forms as well as adding static client-side JavaScript and CSS resources for
syntax highlighting. The resource part later on was taken oven by the Sweble
project in a modified form. For forms, the HTML generation process was modi-
fied to allow for a custom markup input stream that allows Wicket markup. So
far, only HTML was allowed. The markup input stream comes with the overhead
of parsing the data structure after it has been created from the WOM represent-
ation. Alternative implementation approaches that include low-level changes in
the Wicket core are not flexible enough for future versions of Wicket.

7.8 Security

For security reasons, JavaScript scripts are evaluated with a class filter. The class
filter is a mechanism provided by Nashorn to restrict access to specific classes.
This is similar to a custom classloader, with the difference that it is more light-
weight and less coding is required. As the functionality of the classloader should
remain mostly unchanged and only rules are required to block unwanted classes
need to be enforced, the class loader concept reduces duplicate code. Whenever
a class is to be loaded, the exposeToScript method is loaded with the class name
as string and therefore, low level class accesses can be restricted. In the current
implementation, a requirement for loadable class names is that they begin with
the Sweble Wiki’s package name or are in the java.util package.

58

Two PreSave visitors are defined by the scripting module: ScriptingPreSaveVisitor
and FormVisitor. The ScriptingVisitor processes script tags and external-script tags,
which are originally of the type SwcTagExtension and are then transformed to
dedicated nodes of their respective types. The FormVisitor transforms XML tags
in the Wiki markup (i.e. of the type SwcXmlElement) to dedicated nodes when
saving the resource, e.g. S2weForm. When other wiki markup dialects are im-
plemented, the respective equivalents would similarly get transformed by custom
visit methods. For evolvability, the goal is to have all further script processing
in the pre render and HTML rendering phase independent of the original markup
language used.

The scripting module defines the PreRender visitor ScriptingVisitor. The Script-
ingVisitor processes script tags and external-script tags. For forms, such a visitor
is not necessary as the forms are directly rendered by the RenderHtmlFormVisitor
to Wicket HTML.

7.9 Round-trip data (RTD)

Form elements and script elements are transformed into dedicated S2weNodes,
e.g. S2weForm before they are saved. They are represented by XML nodes
with a custom element name. This representation however by default lacks the
round-trip data which is required to reproduce the original code from the WOM
representation. The text content of Wom3Text and Wom3Rtd is used for the
recursive Wikitext reconstruction.

The ScriptingPreSaveVisitor and the FormVisitor create dedicated extending
classes of S2weNode. To allow for reconstruction of the original Wikitext, those
nodes have Wom3Rtd nodes which hold the Wikitext in such a way that concatten-
atting recursively all Wom3Rtd and Wom3Text nodes gives the original Wikitext.
As XML or HTML tags are need to be stored as RTD to reconstruct the original
Wikitext, those nodes normally have one Wom3Rtd as first child, followed by po-
tentially one Wom3Text and/or S2weNodes children and as last child a Wom3Rtd.
The Wom3Text holds the content of the node, such as the label of a button or the
content of a text area. To change the text content (e.g. setLabel of a button),
the respective Wom3Text node is found its content is updated. For creating RTD,
the class RtdToolbox provides several helper methods for creating the RTD nodes
recursively and appending them to the S2weNodes.

59

RTD correction mechanism

Scripts may manipulate the WOM without adjusting the Wom3Rtd nodes. For
temporary modifications of the WOM this is not a problem. For example, a form
submission may modify the WOM without commiting and therefore display the
changes only for the page rendering for the specific user. However, as soon an
commit occurs, the changes to the page remain permanent. When viewing the
source code or editing the page, the displayed Wiki markup (e.g. Mediawiki Wiki-
text) does not necessarily represent the stored markup as some RTD information
might be missing. Moreover, the end-user cannot be expected to fix the RTD
himself, as the concept of RTD is very low level and already complex to handle
correctly for experienced developers.

To avoid having an unmatching Wikitext representation which does not represent
the WOM exactly, an mechanism to traverse the WOM after a commit or onSave
is required. Such a mechanism exists in the Sweble Wiki in the form of a visitor
which traverses the document and fixes or removes RTD nodes. Therefore, there
was no need to ensure a matching RTD representation by the Sweble scripting
module.

7.10 Context of scripts

All scripts can get a custom context object depending on how the script is ex-
ecuted. Within the current implementation, one can distingish between:

• execution as script expression (CtxExpression),

• execution as external script, e.g. script resource or external script during
onSave and onSubmit(CtxExternalWritable),

• execution as external script, e.g. script resource or external script during
onRender,(CtxExternal) or

• execution with the interactive scripting page (CtxInteractive).

Both external scripts as well and script expressions have a context resource dur-
ing execution. For example, the page referencing the script onRender is used as
context resource. For onSave, it is the resource being saved that is the context re-
source. In case of onSubmit, it is the article resource containing the form that will
server as context resource. The script resource or the article resource containing
the executed external script are not used as script resource. Interactive scripts
have no context resource, i.e. a resource upon which default WOM operations

60

are performed. Of course, a interactive script may load a resource and perform
operations on it, but this requires to explicitly load that specific resource.

Both external scripts and interactive scripts have access to specific “additional”
methods as having more than one statement in those scripts is intended. Those
methods include getTx(), as those scripts might commit changes to the WOM.

In case of onRender, committing a change is not allowed for performance reasons.
Otherwise, each rendering of a page would result in a new revision of a resource.
Therefore, getWritableTx() is not available.

7.11 Embedding JavaScript in Java

One way of enabling end-user scripting would be to use Nashorn, which is a
Java-based JavaScript interpreter and a successor of RhinoJS. Nashorn is default
scripting engine of the Java Scripting API since version Java 8.

JavaScript, similarly to Wikitext in the current implementation or HTML, allows
“syntax errors” and resolves them in a best-effort approach.

Parameters can be passed to a script engine by calling the method put(String
paramName, String paramValue) on the script engine. Passing parameters from
the script back to Java is done via the method get(String paramName)

7.11.1 Script engine discovery

The ScriptEngineManager is a registry for all scripting engines available to the
user (cf. p. 391, Bosanac, 2007).

The Java Scripting API provides its own mechanism to map media types to script
engines. To do so, the ScriptEngineManager by the Java Scripting API also allows
for getting a script engine by media type name, however in this case script engine
mappings cannot be customized. Also, this approach keeps the option open to
assign specific script engines to users if this is needed one day.

7.11.2 JSR optimization

If script engines implement the Compilable such as the JavaScript engine Nashorn
then the script can be compiled to Java bytecode and thus be executed very
efficiently (cf. p. 432, p. 437, Bosanac, 2007). This bytecode can be cached
to speed up script execution. This optimized approach is used in the Sweble
Scripting implementation. For script caching, an efficient hash is computed over

61

the source code and the compiled script is store in a LRU (last recently used)
cache.

Compilable scripts are cached in the ScriptCache singleton class.

Another interface which can be implemented by scripting engines is Invocable.
If implemented, functions defined in scripts can be invoked from the host Java
code. The same applies to methods of objects (cf. p. 432, Bosanac, 2007).

A ScriptEngine provides a method eval() which accepts a String and a Reader.
In the current implementation, the string of the text content of the WOM repres-
entation is passed to eval. Passing a reader instance might be favorable in cases
where not all the script code should reside in memory. For simple scripts of the
size expected for the Sweble engine using a Reader or the String directly should
not make a difference (cf. p. 17, Sharan, 2014)

Script contexts define the environment which is used and modified when the script
is executed. All script engines have a default script context which is the engine
script context (cf. p. 27, Sharan, 2014).

When a script engine’s eval() method is called with a script context or binding
as 2nd argument, then either the provided script context is used or a new script
context is instantiated for the provided binding, leaving the default script context
unmodified (cf. p. 40, Sharan, 2014).

eval() returns the return value of the last script expression. This approach is only
used for script expressions for the Sweble scripting Module, as (cf. p. 40, Sharan,
2014).

At the moment, the information if a external script (or script resource) contains
a onRender method. Therefore, after rendering a script, it should, the script
reference should be updated if onRender exists or not. This information should
be updated on every change of the involved resources. While for onSave and
onSubmit this is also true that the information if such event listeners, it has less
impact as these events occur more rarely.

7.11.3 Bindings

The JSR 233 allows defining bindings, which are variables, functions/methods
available to the script. This type of binding is known as programmatic binding, as
the engine is invoked from the host Java application (cf. p. 442, Bosanac, 2007).
For example, the function document.write(’test’); that is used in HTML with
JavaScript, might be implemented by binding a document class instance to the
script engine which exposes the method write(String message) to the outside.

62

7.11.4 ScriptContext

The script context is the base on which scripts operate. It is a set of namespaces
that a script can access. When the ScriptContext of one script language is provided
to another script, then the second script can access the variables and bindings
defined by the previous script (cf. p. 442, Bosanac, 2007).

7.11.5 JQuery

The JavaScript library JQuery reduces verbosity of JavaScript and has more
powerful statements than the JavaScript itself. The idea was to allow for jQuery-
inspired syntax also to manipulate WOM objects. When the manipulation of the
WOM is more sophisticated, using the classical WOM interface requires a lot of
coding for little functionality. JQuery works heavily with CSS-inspired select-
ors to operate on sets of elements. In JavaScript, accessing and manipulating
sets of elements requires a loop and additional variable assignments, which is
cumbersome (cf. Freeman, 2013).

However, jQuery depends on the window and is not directly usable without re-
implementing most parts of the jQuery library. Also, the difference of the WOM
and the DOM model (e.g. Wom3Text, innerHTML, setTimeout) do not allow for
direct usage.

7.12 Unit tests

Many scripting and form tests have been implemented. These unit tests may
serve as a good reference and a starting point for writing own scripts as they
provide code samples.

Unit tests have to purpose to test functionality and to ensure that after several
cycles of code modifications the functionality remains unchanged. On top of
that unit tests help to document the code by providing usage examples and
demonstrating how edge cases are handled (cf. p. 53-54, Bosanac, 2007)

Regarding forms, all variants e.g. checked and unchecked checkboxes or radio
boxes are tested. For text areas, text fields, select choices and multiple select
choices and buttons. In all cases, tests exists to ensure that the form elements
work as expected and the reconstructed RTD matches the original Wikitext.
Also, there are unit tests to check if the pre-rendering leaves the RTD intact.

For scripting, the limitation of testing is that other resources cannot be loaded in
the simplified testing ecosystem. Therefore, script references and external scripts

63

are in the same file. The test cases cover, for example:

• blocked scripts which are supposed to throw an exception when called,

• client-side script expressions which are to be ignored by the server-side
scripting module,

• referencing one or more external scripts using the fragment syntax
(e.g. /Article#script1),

• script expressions and external scripts with different execution times (be-
fore, intermediate/default, after),

• handling of incorrect script nodes,

• and failure in case of an invalid script, e.g. with syntax errors.

Testing script mechanisms and forms is not sufficient to test if script execution
works as expected. Therefore, additional sample scripts are tested by ScriptCode-
Test and ScriptNoJsTest. While the ScriptCodeTest has exclusively JavaScript test
cases, ScriptNoJsTest has sample scripts in scripting languages other than JavaS-
cript such as Python or Groovy. Also, mixing different scripting languages is tested
there, as variables or bindings defined in a script may get accessed by scripts ex-
ecuted subsequently. Other tests ensure that the order of script execution (i.e. in
the order of script references) works as expected. Examples for JavaScript tests
are to ensure

• the existence of the Nashorn JavaScript engine,

• the definition of global engine variables,

• that the end-user logging mechanism and the order of log messages works
correctly,

• that returned values and using the print() method,

• that separate scripts using the same script engine manager run independ-
ently,

• that unsafe operations are not permitted,

• and that returned Wom3Nodes such as Wom3Bold are correctly embedded
in the article resource page which references the script.

Unit tests have been especially useful as during my work on my master thesis,
some fundamental changes have been done to the Sweble wiki have been per-
formed and required to test the implementation after merging with the scripting
development branch with the main development branch.

Due to restructuring of the Sweble Wiki, at the time of implementation, no
integration tests have been possible as there was no in-memory database for

64

tests. Therefore, integration tests have been done manually. Wicket pages such
as the interactive scripting page and the logger page might be tested when in-
tegration tests are supported using org.apache.wicket.util.tester.WicketTester and
org.apache.wicket.util.tester.FormTester. Those test can be done without starting
the server process (cf. Gurumurthy, 2006).

7.13 Alternative implementations

Alternatives to the Java Scripting API exists such as the Bean Scripting Frame-
work as covered in the section 3.5.

Instead of defining listeners within a script by defining well-known functions, it is
also possible to define several script snippets and define the event when they are
called as attribute. The downside of this approach is that no logic can be used in
defining these listeners. For example, one might want to use a factory to return
the onRender JavaScript function. This can be done easily with the implemented
approach. Also, when using libraries and other scripts, it is more convenient not
have no context switches between JavaScript and Wikitext several times.

Instead of using Nashorn as script engine for JavaScript, it is also possible use
the JavaScript v8 engine by Google. The good performance of the v8 engine has
lead to several noteworthy implementation around the v8 engine, one of which is
Node.js, an event-driven web server. It is possible to use the v8 engine directly
which is known due to its performance. However, as the implementation of v8
is not available in Java communication overhead from Java to the v8 engine.
Therefore, v8 engine will only outperform Nashorn for heavy computations.

65

8 Conclusion

The Sweble scripting module which has been implemented in this thesis is fully
functional. It enables end-users include script expressions and references to ex-
ternal scripts into resources. External scripts can be script resources or script
snippets inside an article resource, possibly surrounded by Wikitext document-
ation. External scripts may define functions which are called on specific events
such as on rendering a resource, when submitting a form or when saving a re-
source. Those scripts may perform WOM manipulations which allow for simple
web applications inside the Sweble wiki. The script logging mechanism and the
interactive scripting command line are intended to aid end-users in writing scripts,
even though they are not as powerful as debugging tools of IDEs, but still guide
in fixing small problems.

The use of the JSR-233 Scripting API allows integrating almost any scripting
language due its generic nature. Therefore, and due to the this work is not
limited to JavaScript. However, JavaScript has been the focus of this work and
the base of most tests. Support for other scripting languages than JavaScript
goes beyond the original scope of this work. Also, with the Java Scripting API,
innovative new human readable scripting languages as discussed in Cypher et al.,
2010 can therefore be used as well as programming by example approaches.

When coding with the scripting module, functions are provided by the script-
ing module which allow jQuery-like syntax in combination with libraries (e.g.
$(ctx.getDivs()).forEach(func); cf. section 4.9). Even though the WOM
Java API is not ideal and not intended for end-user programming, this syntax
increases understandability for library developers. With script repositories, im-
provements which affect only a small subset of pages can be done decentralized
without requiring a top-down intiative of the Wiki operator or administrator.

The scripting module is specifically tailored for automating and customizing (cf.
section 3.1) recurring tasks which can be triggered by scripts and form buttons
instead of manual work. While research in end-user programming suggests ap-
proaches such as programming by demonstration and a very simple syntax, the
approach chosen in this work is allowing for libraries which might be located

66

inside the Wiki which serves as a script repository. Simple syntax would go
hand in hand with a lot of of globally defined functions for specific domain tasks
(e.g. adding a table row from a submitted form), which contradicts development
guidelines of separating concerns into different namespaces (cf. section). The
library or script repository approach enables users to contribute code libraries
which can be referenced by less experienced users by including a script refer-
ence. In fact, even the task of including the script reference can be automated
and handled by a wizard developed using the Sweble scripting module. When
script repositories of this sort have been developed based on the Sweble scripting
module, this empowers users to automate and customize repetitive tasks without
coding.

67

9 Future work

The Sweble scripting module provides the base for research work in the future.

Most importantly, by collaboratively creating a script repository similar to the
script repository of CoScripter (cf. section 3.1), a wider range of sample scripts
needs to be implemented in the Wiki. Some samples are already present when
starting the Wiki in debug mode. Script libraries need to be grouped, documented
and linked between each other to help the user to navigate to the best script which
is shipped together with the Wiki. Also, article resources and other resources need
to be created to inform users of the possibilities of the scripting module and how
it can automate repetitive tasks with little effort or without coding.

In this work, no end user study has been performed, as this was not the scope
of the this and it was not possible due to time limitations. Future work includes
an in-depth assessment of the strengths and weaknesses of the scripting language
approach as it has been implemented within this work. Especially, the usage of
libraries which hide some complexities of the WOM and its API might help in
the acceptance of the Scripting module and are worth to be investigated further.

Manipulating the WOM works well as long as only the number of elements to read,
traverse and manipulate is very low. However, for more sophisticated applica-
tions a templating mechanism inspired by Apache Wicket can help considerably
to develop applications. Such a template language can be built using markup
inheritance or by grouping components similar to as introduced in section 2.3.

The current Sweble Java API for WOM manipulation is complex for end-users
and more complex than the DOM API provided for HTML DOM manipulation.
For example, setTextContent on a table cell does not set the text content yet,
but it is possible to append a paragraph child to which an Wom3Text child is
appended with the text content that is to be displayed. For easier scripting, it
would be convenient to have an additional method such as setTextValue or similar
which can be called on a table cell, list item etc. and adds the required child nodes
transparently for the user. The existing setTextContent can and should remain
unchanged. This would considerably lower the barriers for end-user programming
and help developers to create libraries.

68

At the moment, applications in the Sweble Wiki are far away from being fully-
fleged web applications. For instance, script applications can only store data in
resources. Article resources are not always the best fit as a storage location, even
though they might serve as a rudimentary “database”. Options for databases
are key-value stores (e.g. as database resource), conventional SQL database with
input validation to avoid SQL injection, noSQL databases or an XML databases
(similar to WOM) which can be queried with XPath statements. PHP offers
features such as image, audio and file manipulation and processing, creating zip
archives (e.g. for download) and authentication. The implementation of these
features as Sweble modules which are accessible by scripts would go hand-in-hand
with an upgrade in attractiveness of Sweble Wiki as a scripting environment. For
example, offering a manipulated image file for download as archived file might
be a feature needed on individual resources which might be implemented using
scripting.

Also, the fact that scripts operate on well-known data structures can be used
for very fine-granular caching. A script, which only prints the current year, for
example, can be cached until the end of the year. The performance gains of cache
hierarchies might be an interesting topic to investigate further.

Currently, referenced onRender scripts are evaluated on every page load, which
enables highly dynamic applications, but comes with poor performance. Possibly,
the onRender script results might be cached until a dependent resource changes
or another event occurs (e.g. regular events). If such a decision is made, script
expression returning e.g. the current date would have a different semantic which
needs to be communicated to the end-user in the scripting module documentation.

Some features of the scripting engine have been created conceptually, but have
not been implemented due to lack of support by the Sweble Wiki system at the
moment. onTimerEvent evaluates a script periodically or at specific times. This
is supposed for cases where external data is to be pulled from other wiki resources
or other data sources to manipulate the WOM.

End-user programming Cypher et al., 2010 includes also tools for visualization
and exploration, which are not yet present in the Sweble Wiki. Also, visual
programming might be helpful to create simple programs, even though Cypher
et al., 2010 describes that the advantages identified in field studies are limited.

As security mechanism, class filters are currently used for JavaScript scripts (cf.
7.8). However, for other languages the Java Scripting API does not define a
way to use a custom class filter. Therefore, for those script languages a custom
classloader needs to be implemented - unless the Java Scripting API offers class
loaders as part of its generic API in future releases.

To conclude, the Sweble scripting module combined with some improvements
provides the foundation for several new fields of application of the Sweble Wiki.

69

References

Bosanac, D. (2007). Scripting in Java: Languages, Frameworks, and Patterns.
Pearson Education.

Burnett, M. M. & Scaffidi, C. [Christopher]. (2013). End-user development. The
Encyclopedia of Human-Computer Interaction, 2nd Ed.

Cholakov, N. (2008). On some drawbacks of the PHP platform. In Proceedings of
the 9th international conference on computer systems and technologies and
workshop for phd students in computing (p. 12). ACM.

Clark, J. (1999). XSL transformations (XSLT) specification. W3C Recommend-
ation, http://www. w3. org/TR/xslt.

Cypher, A., Dontcheva, M., Lau, T. & Nichols, J. (2010). No Code Required:
Giving Users Tools to Transform the Web. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.

Dashorst, M. & Hillenius, E. (2008). Wicket in action. Dreamtech Press.
Dohrn, H. & Riehle, D. (2011, July). WOM: An object model for Wikitext.
Dohrn, H. & Riehle, D. (2013). Design and implementation of wiki content trans-

formations and refactorings. In Proceedings of the 9th international sym-
posium on open collaboration (p. 2). ACM.

Fogie, S., Grossman, J., Hansen, R., Rager, A. & Petkov, P. D. (2011). XSS
Attacks: Cross Site Scripting Exploits and Defense. Syngress.

Fogli, D. & Provenza, L. P. (2011). End-user development of e-government ser-
vices through meta-modeling. In End-user development. Springer.

Förther, R., Menzel, C. & Siefart, O. (2010). Wicket: komponentenbasierte Weban-
wendungen in Java. dpunkt-Verlag.

Freeman, A. (2013). Pro jQuery 2.0. Books for professionals by professionals.
Apress.

Gurumurthy, K. (2006). Pro Wicket. New York: Apress.
Herman, D. & Tobin-Hochstadt, S. (2011). Modules for JavaScript. Preprint,

April.
Insua, E. (n.d.). jsdom: A JavaScript implementation of the WHATWG DOM

and HTML standards, for use with io.js. Retrieved July 5, 2015, from https:
//github.com/tmpvar/jsdom

70

https://github.com/tmpvar/jsdom
https://github.com/tmpvar/jsdom

Jain, N., Mangal, P. & Mehta, D. (2015). AngularJS: A Modern MVC Framework
in JavaScript. Journal of Global Research in Computer Science, 5 (12), 17–
23.

Ko, A. J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., . . .
Myers, B. et al. (2011). The state of the art in end-user software engineering.
ACM Computing Surveys (CSUR), 43 (3), 21.

Ko, A. J., Myers, B., Aung, H. H. et al. (2004). Six learning barriers in end-user
programming systems. In Visual Languages and Human Centric Comput-
ing, 2004 IEEE Symposium (pp. 199–206). IEEE.

Konan, N. (2010). Computer literacy levels of teachers. Procedia-Social and Be-
havioral Sciences, 2 (2), 2567–2571.

Le Hors, A., Raggett, D. & Jacobs, I. (1999, December). HTML 4.01 Specification
- 18 Scripts (tech. rep. No. http://www.w3.org/TR/1999/REC-html401-
19991224). W3C.

Li, P. & Zdancewic, S. (2005). Practical information flow control in web-based
information systems. In Computer security foundations, 2005. csfw-18 2005.
18th ieee workshop (pp. 2–15). IEEE.

Li, S., Xie, T. & Tillmann, N. (2013). A comprehensive field study of end-user
programming on mobile devices. In Visual languages and human-centric
computing (vl/hcc), 2013 ieee symposium on (pp. 43–50). IEEE.

Lieberman, H., Paternò, F., Klann, M. & Wulf, V. (2006). End-user development:
An emerging paradigm. Springer.

Liguori, R. & Liguori, P. (2014). Java 8 Pocket Guide. O’Reilly Media.
McCarron, S. (2009, January). XHTML Media Types - Second Edition (tech. rep.

No. http://www.w3.org/TR/1999/REC-html401-19991224). W3C.
Narmontas, W. & Fancellu, D. (2014). XML processing in Scala. In C. Foster

(Ed.), Xml london 2014 conference proceedings (pp. 63–75). XML London.
Paternò, F. (2013). End user development: Survey of an emerging field for em-

powering people. ISRN Software Engineering, 2013.
Resig, J. & Bibeault, B. (2013). Secrets of the JavaScript Ninja. Manning.
Sharan, K. (2014). Scripting in Java: Integrating with Groovy and JavaScript.

Apress.
Tatroe, K., MacIntyre, P. & Lerdorf, R. (2013). Programming PHP. O’Reilly

Media.
The PHP Group. (n.d.). PHP: Documentation. Retrieved July 5, 2015, from

http://php.net/docs.php
Tilkov, S. & Vinoski, S. (2010). Node.js: Using JavaScript to Build High-Performance

Network Programs. IEEE Internet Computing, 14 (6), 80–83.
Tiwari, N. (2014, February). Simple Ways to Add Security to Web Development.

Linux J. 2014 (238).
WHATWG. (n.d.). HTML5. Retrieved July 5, 2015, from http://www.w3.org/

TR/html5/

71

http://php.net/docs.php
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/

Wood, L., Le Hors, A., Apparao, V., Byrne, S., Champion, M., Isaacs, S., . . .
Sutor, R. et al. (1998). Document object model (dom) level 1 specification.
W3C Recommendation, 1.

72

Appendix A Script document API

Scripts have access to a document object which always offers the same set of
methods. Depending on whether the script is executed as script expression,
external script (onRender, onSubmit or onSave) or as interactive script, a different
context is provided. There is a larget set of methods which are shared between
document and the context (Ctx), see Appendix D.

Methods starting with create[Element]() create a new node of the type [Element].

Methods starting with get[Element]s() return an array of all nodes of type [Ele-
ment]. When a node is provided as argument to that method, only children of
the provided node (or resource) are returned.

getParameter() returns global parameters, e.g. the path where script libraries are
placed or the name of the Wiki system. Those parameters are defined in the
ScriptingModule configuration.

Further documentation of the methods can be found in the JavaDocs or in the
Wiki sample pages.

The API provided to scripts is described by the following methods of document:

void log(String message);

CtxBase getContext();

Object getParameter(String parameterName);

Appendix B External and interactive scripts API

External scripts and interactive scripts have access to the following methods of
document.getContext():

WikiTx getTx();

WRI wri(String wri);

S2weResource getResourceByWRI(WRI wri);

void addEventListener(String eventName, Function eventFn);

void removeEventListener(String eventName, Function eventFn);

void dispatchEvent(String eventName, Object... args);

String getEventName();

Wom3Node getElementById(String id, S2weResource contextResource);

73

Wom3Node getElementById(String id, Wom3Node node);

Wom3Node[] getElementsByTagName(String tagName, Element element);

Wom3Abbr[] getAbbrs(Element element);

Wom3Big[] getBigs(Element element);

Wom3Blockquote[] getBlockquotes(Element element);

Wom3Bold[] getBolds(Element element);

Wom3Break[] getBreaks(Element element);

Wom3Center[] getCenters(Element element);

Wom3Cite[] getCites(Element element);

Wom3Code[] getCodes(Element element);

Wom3Comment[] getComments(Element element);

Wom3DefinitionList[] getDefinitionLists(Element element);

Wom3DefinitionListDef[] getDefinitionListDefs(Element element);

Wom3DefinitionListTerm[] getDefinitionListTerms(Element element);

Wom3Del[] getDels(Element element);

Wom3Dfn[] getDfns(Element element);

Wom3Div[] getDivs(Element element);

Wom3Emphasize[] getEmphasizes(Element element);

Wom3Font[] getFonts(Element element);

Wom3For[] getFors(Element element);

Wom3Heading[] getHeadings(Element element);

Wom3HorizontalRule[] getHorizontalRules(Element element);

Wom3ImageCaption[] getImageCaptions(Element element);

Wom3Ins[] getInss(Element element);

Wom3Italics[] getItalicss(Element element);

Wom3Kbd[] getKbds(Element element);

Wom3OrderedList[] getOrderedLists(Element element);

Wom3UnorderedList[] getUnorderedLists(Element element);

Wom3ListItem[] getListItems(Element element);

Wom3Nowiki[] getNowikis(Element element);

Wom3Paragraph[] getParagraphs(Element element);

Wom3Pre[] getPres(Element element);

Wom3Ref[] getRefs(Element element);

Wom3Repl[] getRepls(Element element);

Wom3Rtd[] getRtds(Element element);

Wom3Samp[] getSamps(Element element);

Wom3Section[] getSections(Element element);

Wom3Signature[] getSignatures(Element element);

Wom3Small[] getSmalls(Element element);

Wom3Span[] getSpans(Element element);

Wom3Strike[] getStrikes(Element element);

74

Wom3Strong[] getStrongs(Element element);

Wom3Sub[] getSubs(Element element);

Wom3Subst[] getSubsts(Element element);

Wom3Sup[] getSups(Element element);

Wom3Table[] getTables(Element element);

Wom3TableCaption[] getTableCaptions(Element element);

Wom3TableCell[] getTableCells(Element element);

Wom3TableHeaderCell[] getTableHeaderCells(Element element);

Wom3TableBody[] getTableBodys(Element element);

Wom3TableRow[] getTableRows(Element element);

Wom3Teletype[] getTeletypes(Element element);

Wom3Text[] getTexts(Element element);

Wom3Title[] getTitles(Element element);

Wom3Underline[] getUnderlines(Element element);

Wom3Var[] getVars(Element element);

Appendix C External scripts API

External scripts provided the following methods due to the context resource:

Wom3Node getElementById(String id);

Wom3Node[] getElementsByTagName(String tagName);

Wom3Abbr[] getAbbrs();

Wom3Big[] getBigs();

Wom3Blockquote[] getBlockquotes();

Wom3Bold[] getBolds();

Wom3Break[] getBreaks();

Wom3Center[] getCenters();

Wom3Cite[] getCites();

Wom3Code[] getCodes();

Wom3Comment[] getComments();

Wom3DefinitionList[] getDefinitionLists();

Wom3DefinitionListDef[] getDefinitionListDefs();

Wom3DefinitionListTerm[] getDefinitionListTerms();

Wom3Del[] getDels();

Wom3Dfn[] getDfns();

Wom3Div[] getDivs();

Wom3Emphasize[] getEmphasizes();

Wom3Font[] getFonts();

Wom3For[] getFors();

75

Wom3Heading[] getHeadings();

Wom3HorizontalRule[] getHorizontalRules();

Wom3ImageCaption[] getImageCaptions();

Wom3Ins[] getInss();

Wom3Italics[] getItalicss();

Wom3Kbd[] getKbds();

Wom3OrderedList[] getOrderedLists();

Wom3UnorderedList[] getUnorderedLists();

Wom3ListItem[] getListItems();

Wom3Nowiki[] getNowikis();

Wom3Paragraph[] getParagraphs();

Wom3Pre[] getPres();

Wom3Ref[] getRefs();

Wom3Repl[] getRepls();

Wom3Rtd[] getRtds();

Wom3Samp[] getSamps();

Wom3Section[] getSections();

Wom3Signature[] getSignatures();

Wom3Small[] getSmalls();

Wom3Span[] getSpans();

Wom3Strike[] getStrikes();

Wom3Strong[] getStrongs();

Wom3Sub[] getSubs();

Wom3Subst[] getSubsts();

Wom3Sup[] getSups();

Wom3Table[] getTables();

Wom3TableCaption[] getTableCaptions();

Wom3TableCell[] getTableCells();

Wom3TableHeaderCell[] getTableHeaderCells();

Wom3TableBody[] getTableBodys();

Wom3TableRow[] getTableRows();

Wom3Teletype[] getTeletypes();

Wom3Text[] getTexts();

Wom3Title[] getTitles();

Wom3Underline[] getUnderlines();

Wom3Var[] getVars();

For onSave and onSubmit events, also the following methods are provided by the
context object:

WikiTx getWritableTx();

boolean commitTx(WikiTx tx);

76

For onSubmit events, also the following methods are provided by the context
object:

String getFormName();

String getSubmitButtonName();

Appendix D Shared document/context API

Both document and any context provides always (”minimal shared functional-
ity”):

String getScriptEngineName();

Wom3Document getDocument();

Wom3Node createElement(String qualifiedName);

Wom3Node createElementNs(String namespaceUri, String qualifiedName

);

Wom3ElementNode createElementNode(String qualifiedName);

String getTextContent(Wom3ElementNode node);

Wom3Abbr createAbbr();

Wom3Big createBig();

Wom3Blockquote createBlockquote();

Wom3Bold createBold();

Wom3Break createBreak();

Wom3Center createCenter();

Wom3Cite createCite();

Wom3Code createCode();

Wom3Comment createComment();

Wom3DefinitionList createDefinitionList();

Wom3DefinitionListDef createDefinitionListDef();

Wom3DefinitionListTerm createDefinitionListTerm();

Wom3Del createDel();

Wom3Dfn createDfn();

Wom3Div createDiv();

Wom3Emphasize createEmphasize();

Wom3Font createFont();

Wom3For createFor();

Wom3Heading createHeading();

Wom3HorizontalRule createHorizontalRule();

Wom3ImageCaption createImageCaption();

Wom3Ins createIns();

Wom3Italics createItalics();

Wom3Kbd createKbd();

77

Wom3OrderedList createOrderedList();

Wom3UnorderedList createUnorderedList();

Wom3ListItem createListItem();

Wom3Nowiki createNowiki();

Wom3Paragraph createParagraph();

Wom3Paragraph createParagraph(String textContent);

Wom3Pre createPre();

Wom3Ref createRef();

Wom3Repl createRepl();

Wom3Rtd createRtd();

Wom3Samp createSamp();

Wom3Section createSection();

Wom3Signature createSignature();

Wom3Small createSmall();

Wom3Span createSpan();

Wom3Strike createStrike();

Wom3Strong createStrong();

Wom3Sub createSub();

Wom3Subst createSubst();

Wom3Sup createSup();

Wom3Table createTable();

Wom3TableCaption createTableCaption();

Wom3TableCell createTableCell();

Wom3TableHeaderCell createTableHeaderCell();

Wom3TableBody createTableBody();

Wom3TableRow createTableRow();

Wom3Teletype createTeletype();

Wom3Text createText();

Wom3Text createText(String textContent);

Wom3Title createTitle();

Wom3Underline createUnderline();

Wom3Var createVar();

78

	Introduction
	Motivation
	Scope
	Research question

	Related work
	Node.js
	Web Scripting Framework
	Wicket
	HTML, DOM and JavaScript
	XSLT
	PHP

	Background research
	End-user development (EUD)
	Web programming languages and their problems
	Weaknesses of templating languages
	Security problems

	Scripting languages
	Rapid prototyping
	Scripting in Java

	Methods: Usage and API of the scripting module
	Events of script invocations
	Script expressions
	Referencing external scripts and script resources
	Script references
	External script nodes
	Script resources

	Evaluation time
	Execution model
	Forms and form elements for Sweble resources
	API
	onRender
	onSubmit
	onSave
	Event listeners

	Bindings and context available to scripts
	Context of script expressions
	Context of external scripts
	Context for interactive scripting (''CLI'')

	Simple syntax
	Script repositories
	Permissions
	End-user tools
	Interactive scripting
	Script logging

	Sweble module vs. scripting

	Comparative evaluation of the Sweble Scripting module with PHP
	Readability
	Ease-of-use
	Reusability
	Performance
	Caching
	Evolvability
	Debugging tools
	Security
	Versatility
	Direct comparison with PHP

	Design
	Scripting module
	Events of script invocations
	''String concatenation'' vs. DOM/WOM manipulation
	JavaScript as main scripting language for Sweble
	Evaluation time
	Execution model
	Script logging

	Implementation
	Sweble module
	Sweble Wiki
	Resources
	Transformation and presentation of resources
	Transformation of Wikitext to internal representations

	Markup generation
	Forms and form elements
	ScriptResource
	Form submissions and markup
	Wicket dependencies
	Security
	Round-trip data (RTD)
	Context of scripts
	Embedding JavaScript in Java
	Script engine discovery
	JSR optimization
	Bindings
	ScriptContext
	JQuery

	Unit tests
	Alternative implementations

	Conclusion
	Future work
	Appendix Script document API
	Appendix External and interactive scripts API
	Appendix External scripts API
	Appendix Shared document/context API

