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Abstract

Representational State Transfer (REST) is an efficient and by now established
architectural style for distributed hypermedia systems. However, REST has not
been designed for more than short-term offline operations, yet many applications
must keep functioning when going offline for more than a few seconds. Burdening
the application with knowledge about offline status is undesirable. We define a
function to derive a finite-state machine for the client side based on a formal
model to describe RESTful systems as finite-state machine. We then extend
existing caching approaches for offline operation so that a client-side proxy can
transparently hide the offline status from the application for all derived states.
We validate our solution with a proxy layer that covers all state-model derived
test cases. Using our model and proxy, clients do not have to know and worry
about whether they are online or offline.
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1 Introduction

Representational State Transfer (REST) was introduced by Fielding (2000) within
his dissertation. Developers ignoring constraints of REST were the reason for
Fieldings blog post1 in 2008. In it he explains that REST APIs must be hyper-
text driven in order to fulfill the hypermedia constraint. This constraint requires
a stable internet connection to allow the client to communicate with the server.
However, stable internet connections are not possible in any place at any time.
Therefore, offline support on the client side would improve the user experience.
We encountered several scenarios that would profit from offline support:

Farmers have to document every step of their daily work in the fields2. Connection
problems are a common problem in agriculture and forestry. Farmers often have
to document their steps with pen and paper. Service technicians are not always
allowed to have internet access due to fear of industrial espionage. Customers
using apps for shopping lists may have no access in the basement of a shop.
Moreover, anybody will encounter connection problems while traveling around
the world on top of a mountain or in the forests. An offline mode would increase
the user experience in these situations.

1.1 Thesis Goals

This thesis proposes a solution for offline support in RESTful systems. Therefore,
it has to be checked whether offline support and REST fit together. If Fielding’s
constraints for REST can be fulfilled despite providing offline support it will fit.
Another goal of this thesis is to check what functionality can be made available
offline. This thesis will define a model to decide whether a given functionality
can be supported offline.

Within this thesis different approaches for offline support will be drafted. One
approach will be implemented as prototype and discussed in the research chap-

1http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
2https://www.landwirtschaftskammer.de/dueren/download/formulare/schlagkartei.htm
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ter. The other approaches will be summarized in the elaboration chapter. The
prototype will not be fully functional. The implementation will be limited to the
features providing new findings for this topic. Therefore, the prototype will work
in memory instead of using databases. Moreover, this thesis does not focus on
prefetching algorithms for caching. We assume that the cache of our prototype
is already filled and contains data to work with.

1.2 Thesis Structure

After this introduction the research chapter begins. The research chapter contains
the findings of this thesis in paper format. It was limited to 6000 words by the
professorship to match limitations of conferences. The research chapter itself
follows a common paper structure:

It starts with an introduction. Afterwards, related work will be discussed, fol-
lowed by our research questions. After explaining our research approach the
research results will be summarized. Moreover, we will discuss our results and
close up by a conclusion and future work.

The elaboration chapter contains additional information that did not make the
cut for the research chapter. The challenges of supporting offline modes will be
discussed in more detail. The implementation of our prototype will be explained.
We will also explain additional approaches that were not chosen for the prototype.
Finally, we will take a look on offline support for microservices.

Within the appendices we will give a short deployment manual for our prototype
and some information about the contents of the CD.
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2 Research Chapter

2.1 Introduction

Representational State Transfer (REST) was introduced by Fielding (2000) within
his dissertation. Developers ignoring constraints of REST were the reason for
Fieldings blog post1 in 2008. In it he explains that REST APIs must be hyper-
text driven in order to fulfill the hypermedia constraint. This constraint requires
a stable internet connection to allow the client to communicate with the server.
However, stable internet connections are not possible in any place at any time.
Therefore, offline support on the client side would improve the user experience.
We encountered several scenarios that would profit from offline support:

Farmers have to document every step of their daily work in the fields2. Connection
problems are a common problem in agriculture and forestry. Farmers often have
to document their steps with pen and paper. Service technicians are not always
allowed to have internet access due to fear of industrial espionage. Customers
using apps for shopping lists may have no access in the basement of a shop.
Moreover, anybody will encounter connection problems while traveling around
the world on top of a mountain or in the forests. An offline mode would increase
the user experience in these situations.

Cloud Computing also benefits from offline support. Current browsers use offline
storage to enable web or cloud applications working offline. Google suggests the
offline first approach in their developer documentation3. Offline first supposes to
write an app as if it needs no internet connection. Network features can be added
once the app works offline. Nevertheless, developers have to implement offline
support manually. They are also forced to distinguish between offline and online
mode.

Is offline support in RESTful systems an oxymoron? Is there any way to reduce
1http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
2https://www.landwirtschaftskammer.de/dueren/download/formulare/schlagkartei.htm
3https://developer.chrome.com/apps/offline_apps
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the developer’s effort for implementing offline clients? To answer these questions
we did some research on related work that will be discussed in the following
section. The third section proposes the research questions. In Section 2.4 we
describe how the questions will be answered and afterwards we show the results
we got by research and implementation. Finally, we will give a short outlook on
future work.

2.2 Related Work

This section gives an overview of related approaches for caching and offline be-
hvavior. Besides web and mobile applications we will investigate additional fields
of computer science. The end of this section contains a discussion about some
frameworks for offline applications.

If we talk about caching one might think about hardware caching and how it is
done by CPU and RAM. In contrast to web applications the data required by
CPU or RAM is available on the hard disks at any time. This availability is
the main difference to offline support in web applications. The caching on hard-
ware level serves another purpose. Caching is mainly implemented to increase
the performance (Handy, 1998). Caching in web applications can increase the
performance but is also used to tolerate flaky internet connections.

Version Control Systems (VCS) like GIT are tools with offline support. They
solve many problems of offline support like detection and resolving of conflicts as
well as data synchronization with remote repositories. The main difference is that
all features of the VCS are available on every client. Moreover, unique IDs can be
generated by every client since no server-specific data is required. Additionally,
clients do not have to struggle with limited data access as all required data is
pulled from the repository. Therefore, approaches used by VCS do not fit into
offline web applications.

Disconnected operations are not exclusive to web applications. In fact, dis-
tributed systems already consider them. Nevertheless, those considerations are
not suitable for web architecture. However, some distributed systems defined
fitting goals. Demers et al. (1994) defined the following goals for the Bayou Ar-
chitecture which are also relevant for our work: Firstly, an offline approach has to
support devices with limited resources. Secondly, high availability for read and
write operations should be ensured. Thirdly, there has to be a mechanism to sup-
port the detection of update conflicts. Finally, an application specific resolution
of update conflicts has to be established.

Satyanarayanan (2002) proposed Coda, a distributed file system that runs with
a client-server model. It distinguishes a small number of trusted servers and a
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large number of untrusted clients. Coda uses a callback-based cache coherence:
the server remembers which objects have been cached by a client. Due to the
stateless constraint defined by Fielding (2000) this approach is not applicable for
RESTful systems.

Gonçalves and Leitão (2007) contributed a lot to enable offline execution in web
applications. They described an offline model that contains a subset of all server
logic. The interaction model describes that a local server has to work as a proxy
which has to forward all requests if online. In offline mode the proxy has to
register the offline request and return an offline response. If the client goes online,
all offline work has to be synchronized with the server (Gonçalves & Leitão, 2009).
However, Gonçalves and Leitão (2007) focused on prefetching mechanisms to fill
the offline cache which is not part of this work.

Working offline is a common problem for some applications which is why frame-
works handling this topic were released. Hoodie4 is a library package designed for
frontend web applications and follows the offline first approach5. Hoodie offers a
local, user-specific database that is automatically synchronized with the server.
Loopback6 is a node.js API framework that enables offline synchronization via
isomorphic javascript. The data replication is implemented as model-based data
persistence. The framework can also be used to synchronize multiple backends,
but its focus is not mainly on offline support. Furthermore, those frameworks
do not concentrate on RESTful systems and they need specific backends to run
properly. This is why we tried to define a generic model to add offline support
to new RESTful systems as well as to existing ones.

2.3 Research Questions

At first RESTful systems with offline support might seem like an oxymoron.
Nevertheless, offline support is required in many applications. Therefore, the
necessity of offline support is out of question but is it possible to provide it within
RESTful systems? To fulfill the hypermedia constraint, REST relies on stable
internet connections. In case of flaky connections the hypermedia constraint has
still to be fulfilled.

The next step would be to think about the different categories and levels of offline
support. The definition of a hierarchical structure of offline support seems useful.
A possible categorization could differ according to its access to data. However,
read-only access can also be enabled via caching. Therefore, it has to be clarified

4http://hood.ie
5http://offlinefirst.org
6https://loopback.io
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whether caching itself represents one level of offline support. With this hierarchy
we are able to describe on which level an offline model for REST could work.

Solutions for offline support in applications have to address functional and data-
access problems. Software developers can implement those solutions in three
ways: manually, by using frameworks and by code generation. Manual imple-
mentations often duplicate the server code and port it to the client. However,
this approach is time-consuming and can lead to copy and paste errors. The use
of frameworks can help but, as discussed in 2.2, most of them do not focus on
REST constraints. Moreover, they only cover a subset of offline support, like
read-only access while we try to find a generic solution for offline support. Since
it will not be possible to enable all functionality in a generic way, we try to
minimize the application specific part.

To sum it up the three research questions are the following: Are RESTful systems
and offline support combinable? How is it possible to organize offline supported
functionality hierarchically? And is there a generic solution for offline support in
RESTful systems?

2.4 Research Approaches

These questions will be answered by the following research approaches: The first
question can be answered by literature research. Therefore, the latest publications
on REST will be reviewed. To answer the second question a literature research
will be done, too. If no categorization is available, we have to define our own
levels of offline support. To give an answer to the last research question we
propose our model for offline support. Zuzak, Budiselic, and Delac (2011) proved
that RESTful APIs can be modeled using finite-state machines. They used a
nondeterministic finite-state machine with ε-transitions (ε-NFA) to explain the
operation of RESTful systems. Considering their formal model we defined a
transformation function Φ to convert the ε-NFA of the origin server into the
ε-NFA of the proxy on client side.

2.4.1 Overview of the Underlying Model

Every ε-NFA can be described as a tuple (S,Σ, s0, δ, F ), where S is a finite, non-
empty set of states. Σ is a finite, non-empty set of symbols representing the
input alphabet. s0 ∈ S is the initial state of the ε-NFA. δ is the state transition
function δ : S × (Σ ∪ ε) → P (S), where P (S) is the power set of S and F ⊆ S
is the set of accepting states. Zuzak et al. (2011) described three main parts
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of ε-NFA operations: the Input Symbol Generator, the Transition Function and
finally the Current State.

They mapped a RESTful system to the ε-NFA formal model as follows: Let Reqs
be a finite set of valid requests, let Metas be a finite set of metadata key-value
pairs, let LTypes be a finite set of link types and let MTypes be a finite set
of media types. Finally, let Reprs be a finite set of resource representations:
Reprs ⊆ data × P (Metas) where one metadata element defines the media type
of the representation.

Next, let Ops be a finite set of resource manipulation methods. The set of states
S of the ε-NFA are the application states, where an application state is defined
as a non-empty, ordered set of representations S ⊆ P (Reprs) − {}. In addi-
tion to Zuzak et al. (2011) we also include the Ops in the definition of states
S ⊆ (P (Reprs) − {}) × Ops. Therefore, an application has different states for
manipulating and retrieving representations. Moreover, the initial state s0 rep-
resents the initial application state, which is called dispatcher state. Zuzak et al.
(2011) also defined the set of accepting states. In our opinion a RESTful Sys-
tem does not contain such accepting states, since it runs until it is undeployed.
Therefore, let F be empty. The set of input symbols Σ of the ε-NFA represents re-
quests Reqs and their corresponding link types LTypes, Σ ⊆ Reqs×LTypes. The
transistion function δ represents the translation of input symbols into requests,
processing of requests into responses and integration of response representations
into the next application state, δ : S × (Reqs× LTypes)→ P (S).

2.4.2 Deriving the Proxy Finite-State Machine

We distinguish between the origin server and the proxy on client side. If the
RESTful system has to work offline, all requests will be handled by the proxy.
The origin is responsible for the conversion of requests into responses. Therefore,
the proxy has to convert the requests into responses while working offline. We
defined two different limitations for offline mode: functional limitations and data
limitations. The ε-NFA of the proxy is a subset of the ε-NFA of the origin.
However, if the origin only serves Create, Retrieve, Update and Delete (CRUD)
operations the proxy ε-NFAmay contain all states of the origin,MProxy ⊆MOrigin.

Processing images and creating PDF files are two examples for functional limita-
tions. Every state handling those functional limitations has to be removed from
the proxy ε-NFA. Data limitations due to missing availability have to be consid-
ered, too. This could be the case with statistical evaluations but also simply with
query endpoints. Therefore, every state has to be evaluated as to whether it re-
turns a collection of resources. If working on a cached subset of data is sufficient,
the state can be part of the proxy ε-NFA. If all data is needed for the processing
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of requests, the state has to be removed from the proxy.

By using the model of Zuzak et al. (2011) we defined a function Φ. This func-
tion uses the ε-NFA of the origin as input and converts it to the ε-NFA of the
proxy, Φ(MOrigin) → MProxy. Since both machines are described as the tuple
(S,Σ, s0, δ, F ), Φ defines rules for every element of the tuple.

Every state without functional and data limitation is part of the finite set of
states of the proxy. Functional limitations can be filtered by media type. A state
is a non-empty, ordered set of representations, while a representation contains
at least the media type as metadata key-value pair. Therefore, the function
mtype(s) returns the media type of the representations. MTypesOnline is the
finite set of media types that can only be provided in online mode. The function
countReps(s) verifies that enough data can be available offline so that a non-
empty, ordered set of representations can be returned in the response. The rules
for filtering the origin states is defined as follows:

SProxy = {s|s ∈ SOrigin \ {mtype(s) 6∈MTypesOnline; countReps(s) > 0}}

Due to additional limitations it may be necessary to remove some of the input
elements from the proxy. Since an input element is defined as the combination of
Reqs and LTypes, the LType can be used to decide whether the input element
should be part of the proxy. Therefore, we defined a function ltype(σ) that
returns the LType of the input element. LTypesOnline is the finite set of link
types that can only be provided in online mode. Function Φ uses the following
rule for filtering the input elements:

ΣProxy = {σ|σ ∈ ΣOrigin \ {ltype(σ) 6∈ LTypesOnline}}

The initial state or dispatcher of the state machine is the same for both, the origin
and the proxy. The dispatcher contains information about the next available
states. Therefore, no data is needed and there are no functional limitations. It
can be ensured that the dispatcher state will not be removed from the proxy by
the defined rules of Φ:

s0Proxy
= s0Origin

The transition function δ is also not transformed by Φ. The translation of in-
put symbols in requests, the processing of requests to responses and the inte-
gration of response representations into the next application state is defined as
S × Σ→ P (S). The proxy may have a smaller power set due to some missing
states and input elements, but the transition function itself remains unchanged:

δProxy = δOrigin

8



The accepting states should only contain states s ∈ SProxy if one follows the
definition of accepting states by Zuzak et al. (2011). Since we have a different
opinion, our set of accepting states remains empty in the proxy as well as in the
origin. Therefore, we defined the rule:

FProxy = FOrigin

The function Φ transforms any ε-NFA of an origin backend server into an ε-NFA
for a proxy on client side. This allows a developer to implement an offline mode
in their RESTful system.

2.4.3 Using the Transformation Function

The next step is to define an application sample. Afterwards, the origin ε-NFA
will be transformed into the proxy ε-NFA by the manual use of Φ. The resulting
proxy will then be implemented and evaluated. If the proxy can support the
application during offline mode we consider Φ as correct. Since we mentioned
only a general set of rules for Φ in Section 2.4.2, we will now give some more
examples.

The states are filtered via media types due to functional limitations. The media
types application/pdf and image/* are two examples that have to be removed
from the proxy ε-NFA. Image processing functionality is too complex to be im-
plemented on the client side. Some clients may not support image processing
libraries or have only limited hardware resources. Since the generation of PDF
files is also not available on every client, we blacklisted this media type as well.

The proxy is allowed to provide endpoints that return a collection of resources.
However, we have to take into consideration that the proxy can only use cached
data. It may occur that a request handled by the proxy will return a different
non-empty set of resource representations than the origin would have returned. If
the proxy has to process a request whose state is not available in offline mode, the
proxy will return the http status code 503 - Service Unvailable and will redirect
to the initial state of the ε-NFA.

2.5 Research Results

In this section the three research questions will be answered. The first one by
literature, the second by our own hierarchy and the last one by describing the
concept for an implementation.

9



2.5.1 RESTful Systems and Offline Support

Current literature about REST does not cover offline support. Richardson,
Amundsen, and Ruby (2013) as well as Webber, Parastatidis, and Robinson
(2010) do not talk about offline support at all since they mainly focus on the
server side. However, Tilkov (2013) wrote at least one chapter about caching but
focused on http.

In contrast to literature, searching the world wide web leads to different ap-
proaches to implement offline support for RESTful systems. REST inherently
fits many offline scenarios, mainly because of statelessness. Idempotent requests
can be queued on the client side quite easily for later delivery. However, in
case of dynamically created resources the client has to provide URIs. In case of
non-idempotent requests the client needs a mechanism to detect conflicts. Non-
idempotent requests can not be easily repeated in case of failure.

Riva and Laitkorpi (2009) summarized challenges and constraints of a mobile
environment that are beyond the typical REST design. One of these constraints
is the offline/online behavior. They state that flaky network connections are
typical for mobile devices. Therefore, mobile services have to define a strategy
for supporting offline operations. Since they are designing mobile services using
REST, their opinion is that offline support is fit for RESTful systems. However,
they do not have any explicit support to process requests offline within their
solution.

Our opinion is similar to Riva and Laitkorpi (2009): RESTful systems can be
built with offline support. The following challenges have to be considered:

• Client-provided IDs. In case of dynamically created resources the client has
to create the ID for the resource as well as the URI. If an ID is already
in use to a concurrent client, conflict resolution has to be implemented. A
resource created via POST request will per definition get a server-provided
URI. It is reasonable to provide temporary IDs in offline mode that will be
replaced with actual IDs as soon as the synchronization with the backend
is running.

• Data synchronization. Executing requests offline is not sufficient. It is also
necessary to synchronize the changed resources with the backend. Conflicts
may appear and have to be resolved. Preconditions like etags may also
change during synchronization and have to be considered.

• Lost-Update problems. Two different clients can work on the same resources.
One client can work offline on cached resources while the other one sends
requests to the backend. In this case the data has to be merged. If merge
conflicts appear, the client or the server has to resolve them.
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• API Hooks. Hooks in RESTful APIs are a common scenario. Hooks for
email notifications are an example for API hooks. Whether a hook should
be executed after synchronization can not be decided generally. It would
be possible to include timestamps in every request. The server can then
decide to execute the hook if necessary.

• Subscriptions. Many APIs support subscriptions of resources. Without
subscriptions a client sends requests to the backend to check if a resource
has changed. To reduce the amount of requests, a client can subscribe for
resources. If the resource changes the server sends a notification to the
client. If the client is offline the server has to queue the notification and
deliver it later.

• Authorization and access rights. The backend returns hypermedia links
to resources based on user roles and access rights. If a client has offline
support, it has to be ensured that cached resources can only be accessed by
users with corresponding rights.

Despite of all those challenges it is possible to enable offline support for RESTful
systems.

2.5.2 Hierarchies of Offline Support

Caching

Idempotent Operations

Non-idempotent Operations

Queries with pagination

Complex computational functions

Identical clone of server

su
pp

or
te
d
fu
nc
ti
on

al
ity

ge
ne
ri
c
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lu
ti
on

Figure 2.1: A six-tier hierarchy for offline support.

We defined a hierarchy with six tiers of offline support. A higher tier supports
more functionality. However, additional challenges have to be solved at higher
tiers. In contrast to generic solutions on lower tiers more specific implementations
are also needed at higher tiers.

Figure 2.1 shows our six levels. The lowest tier represents caching and enables
the client to process read operations while offline. In addition to Fielding (2000),
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who defined the caching constraint to reduce network traffic, caching can also be
seen as strategy for processing requests while being offline. Due to the caching
constraint this tier can be achieved by every RESTful system.

To achieve the second tier of offline support, idempotent operations have to be
supported. The HTTP specification defines that the methods DELETE, GET
and PUT have to be idempotent. Therefore, those requests should be processible
on this tier. In addition to caching the client will need a queue to store all
requests that were executed offline. The cache needs no additional functionality
since delete and update operations should be available in every cache. However,
caching is transient but has to be persistent on this tier. A client may have to
reboot while working offline and the work should still be available afterwards.
Query operations are also idempotent but are often marked as uncacheable in
RESTful systems. Therefore, additional methods are needed since queries can
not easily be processed by the default caching strategies. Queries are thus not
supported on the second tier.

Create, Retrieve, Update and Delete (CRUD) operations define the third tier.
Create operations are not always idempotent. Therefore, client and server have
to ensure that those requests will not be executed multiple times. The client
needs additional knowledge in order to create temporary resources containing all
relevant information like IDs. During synchronization the temporary resources
must be removed from the cache. Requests that follow up the create operation
have to be redirected to correct URIs.

The fourth tier also includes query operations. Queries often return a collection
of resources. Therefore, the whole data is queried and the resources are filtered by
query parameters. The client cannot guarantee that all data is available in cache.
An query can only return a limited collection of resources if executed offline. The
client does not know whether a request would return the same collection in online
mode. In addition to the previous tiers the client also needs to support paging.

Access to all data stored on the backend can not be guaranteed by the client.
The client only has access to data that was cached before the network connection
failed. However, distinguishing between functionality that can be implemented
on the client side and functionality that can not be implemented is necessary. The
fifth tier contains all functionality that can somehow be enabled independent of
effort in implementation.

A perfect clone of the server represents the sixth tier. The most specific imple-
mentations have to be made on this tier. Moreover, all functionality has to be
implemented on client side. Therefore, this tier contains all functionality that is
not possible to implement on client side and has access to all data available on
the server. This is why the highest tier is an utopia that can never be reached.
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2.5.3 An Offline Framework for RESTful Systems

The RESTful system we used as an example implementation will be described in
this section. Afterwards, we derive the proxy ε-NFA by the manual use of our
function Φ. Therefore, the set of rules described in 2.4.3 is used. All relevant
concepts for the implementation are also discussed in this section.

s0

GET
Users

GET
User

POST
User

DELETE
User

PUT
User

POST
Image

GET
Image

PUT
Password*

origin + proxy origin only

Figure 2.2: The finite-state machine for the sample to-do-list application. The
asterisk represents the default CRUD states for the to-do sub-resource similar to
the user states.

The most common example for offline frameworks is an application for to-do-lists.
Therefore, we also chose a to-do-list application. Figure 2.2 shows the ε-NFA of
the sample application. The diagram does not contain transitions for error cases.
Moreover, every state has a transition to the initial state. The sample application
has users as primary resource and to-dos as sub-resource. The states for the to-
do sub-resource are summarized as asterisk since they are similar to the CRUD
states for the users resource.

Creating a new user requires information such as username, email address and
password. However, on retrieval the returned representation should not contain
the password. Therefore, we defined two media types for the user resource: one
containing the password for user creation and updating of passwords as well as
one without password for user retrieval. The to-do resource requires only one
representation and therefore only one media type. The finite set of media types
is defined as follows:

MTypes = {image/∗;
application/user.default+ json;
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application/user.userwithoutpassword+ json;
application/todo.default+ json}

We described the set of states on an abstract level since every resource of a given
type can put the application into equivalent states. Since the Ops are part of a
state it is possible to summarize the states using the Ops. The user resources
therefore have one state per CRUD operation. An additional update state is
defined to support password changes. Since the user resource embeds a profile
picture two more states are required: one for uploading a profile picture as well as
another one for retrieving the profile picture. The to-do resources do not require
additional states besides those serving the CRUD operations. For users and also
to-dos we defined query states to filter the resources on the server.

We also described the set of input elements on an abstract level. Input elements
were defined as requests and their corresponding link types. Input elements can
affect different resources. However, they can be grouped by their LType since
the same LType has an equivalent effect on different resources. The example
application defines the set of LTypes as follows:

LTypes = {createUser;updateUser;updatePassword; queryUsers;
getSingleUser; deleteUser;uploadImg; getImg; createTodo;
updateTodo; queryTodos; getSingleTodo; deleteTodo}

The next step after defining the ε-NFA for the origin is to apply the function
Φ manually. Therefore, the finite set of states as well as the finite set of input
elements have to be filtered. Based on the defined rules we dropped the states
for retrieving and uploading profile images. The state for updating user pass-
words will also be dropped from the proxy state machine for security reasons.
Furthermore, the input elements with the link types updatePassword, uploadImg
and getImg have also to be removed. Figure 2.2 shows the resulting ε-NFA for
the proxy on the left side of the dashed line.

The derived proxy will be implemented as prototype for evaluation. The proxy
should then enable offline support on the fourth tier of our hierarchy. The fourth
tier can be implemented in a generic way due to the small amount of application
specific features. The resulting proxy layer can thus be easily reused for other
applications.

The essential component of the first tier is the cache. Since the media types of
the example application are based on JSON the cache component should be able
to handle finite sets of key value pairs. The second tier requires the cache to be
persistent in order to allow the client to reboot without losing work. However,
for this prototype we will only implement an in-memory cache.

An additional component has to enqueue all requests that were executed offline.
The enqueued requests can later be replayed to the server. The fourth tier can
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also serve non-idempotent requests which may lead to conflicts. Furthermore, lost
update problems may occur if multiple users are updating the same resources.
Therefore, the proxy implementation has to detect those conflicts. If conflicts
were detected the proxy has to solve them either by itself or by using a callback
function asking the application for help.

The component for request execution itself has to interpret incoming requests and
manipulate the cached data. Idempotent operations can easily be processed by
retrieving, replacing or deleting the cache entry. On the contrary non-idempotent
requests need additional capabilities like generating temporary URIs or IDs. Since
we want to achieve the fourth tier our prototype also has to handle queries.
Therefore, a component for filtering cached resources and enabling pagination
is required. However, the prototype will not implement filters since they are
application specific and have to be provided by the developers using the generic
proxy layer.

2.6 Discussion

This section describes how the proxy layer is implemented. Afterwards, the set
up of the test cases is explained. The test results will show that the function Φ
is working. Finally, the disadvantages of using a proxy layer are discussed.

2.6.1 Implementing the Prototype

To achieve transparency for the developers of RESTful clients, we decided to
decorate a common http client. The prototype is based on the apache http
client 7. The developer of the application can use our offline client instead of the
apache http client. Since we used the decorator pattern our client provides the
same interface (Gamma, Helm, Johnson, & Vlissides, 1995).

The abstract method doExecute was overwritten and does now call a request
handler that will be provided by a factory based on the http method (Gamma
et al., 1995). The request handler determines whether the client is online. In
online mode the request will be enqueued and the queue will be replayed to the
server. The response of the last request is the required one and will be returned
to the caller. If the client goes offline during synchronization the handler will
switch to offline processing. In offline mode the current request will be enqueued
and afterwards the offline processing will start.

7https://hc.apache.org
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Offline processing was implemented with states. There is one client state for
every http method. Each state has the capabilities to operate on the persistent
cache. After the required CRUD operation was executed a response is build. The
response contains all hypermedia links that the server would return except for
those removed by our function Φ. However, it is possible that an application
sends requests to cached hyperlinks that are not part of the proxy ε-NFA. The
proxy implementation will detect those requests and answers them with a 503 -
Service Unavailable response.

The prototype is a generic solution for RESTful clients. However, it depends on
three classes that have to be extended by the developer since they are application
specific. The ViewDefiner defines the keys of the finite sets of key value pairs
that are described via media type headers. The StateFinder and StateTransitions
describe the ε-NFA of the proxy. If the backend provides an OPTIONS endpoint
the information those three classes provide could be dynamically loaded.

2.6.2 Testing the Prototype

For testing we wrote a random request generator that can easily generate hun-
dreds of requests. Moreover, we manually prepared an in-memory cache so that
we would not have to bother with requests for filling the cache. Since our pro-
totype cannot dynamically load the required information via OPTIONS request
we also implemented the application specific classes.

The test cases are using two clients: one that works offline and one that works
online. Since the offline client is the test subject, the online client is only needed
to produce some conflicts during synchronization. The request generator uses
different probabilities for each http method. Since the sample application is
focused on resource manipulation requests, we increased the probability for those.

The tests were successful and proved that our proxy prototype works. Since we
used the formal model of Zuzak et al. (2011) to derive our proxy, it is ensured
that the proxy itself is also a RESTful system. The proxy is a subset of the origin
and allows offline support on the fourth level of our hierarchy described in 2.5.2.
It would be possible to achieve a higher level only at the cost of implementing
more application specific code. However, the function Φ ensures the result to be
a ε-NFA that can be used by a proxy implemented for the fourth level.

2.6.3 Suitability of the Proxy Layer

Fielding (2000) defined five mandatory constraints for REST. Layered system is
one of those constraints. Therefore, introducing an additional proxy layer fits

16



those constraints. The other layers on the client side would not be affected by
the proxy layer which can thus easily be replaced or changed. The hyperme-
dia constraint is also fulfilled due to the proxy returning all offline processable
hypermedia links within responses.

The proxy layer has to manipulate some of the requests while replaying the
queue. According to Fielding (2000) in Section 5.1.6 “intermediary components
can actively transform the content of messages because the messages are self-
descriptive and their semantics are visible to intermediaries”. The manipulation
of requests is thus allowed and possible.

The server side does not have to care about offline support since the proxy is
not dependent on the server. The server does not have to provide additional
information for the proxy layer within resource representations. The developers
do not have to change the server implementation if they want to add offline
support to their RESTful systems.

Using a proxy layer has some disadvantages. The proxy layer provides its own
cache of resources. If the application using the proxy layer also implemented
a cache, the mobile client could reach its memory limits. This issue has to be
considered while planning the offline support for an existing application. If the
application is built from scratch the developer could consider not implementing
an own cache on top of the proxy layer.

Another disadvantage is that the proxy layer can only process the requests that
are part of the input elements of the proxy ε-NFA. If the layer above requests a
cached hyperlink that cannot be processed the proxy will return a 503 - Service
Unavailable response. Therefore, the layers above the proxy layer have to handle
those responses. If the application itself implement offline support those conflicts
could be avoided.

2.7 Conclusion and Future Work

We implemented offline support for RESTful systems to achieve a better user
experience in several scenarios. Therefore, we answered the question whether
REST and offline support are combinable and defined a hierarchy of six tiers for
offline support. With the help of Zuzak’s formal model we derived the function
Φ to retrieve the ε-NFA for the proxy layer. We implemented the proxy that
resulted from the manual use of Φ. Since our tests were successful we proved
that our model is correct.

We reached the goals of Demers et al. (1994). Some functionality was removed
from the proxy due to limited resources on the clients. We achieved a high
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availability of reads and writes and conflicts can be detected via etags. The
prototype also follows the model of Gonçalves and Leitão (2007) for working
offline. A local server works as proxy, registers the offline requests, and returns
offline responses. When going online all offline work is synchronized with the
server. If the proxy is online it forwards all requests directly to the server.

The implemented proxy layer only served as a prototype. In the future the
prototype has to be refactored and extended. The cache as well as the queue
have to be stored persistently to enable rebooting of the client. Moreover, the
information given in the application specific classes can be loaded dynamically
from the backend. The proxy has to understand the message of the server and
parse the information correctly.

The synchronization process can also be improved. Multiple PUT requests on the
same resource could be combined into one single request. That would simplify
the synchronization and merging process. However, the order of the requests
would not remain the same compared to the current replaying process. Check
whether such a combination of requests can be done without impediments will
need additional work. Currently the proxy layer ignores queued GET requests.
However, they could be used to update the caches during synchronization.

Since we only used the function Φ manually an automation of this function would
be useful. Concerning the work of Schreibmann and Braun (2015) it may be
possible to implement Φ within their model-driven approach to enable automated
generation of proxy layers for modelled RESTful APIs. Using the model-driven
approach would allow us to generate application specific classes and functionality.
Therefore, it could be possible to generate a proxy layer above the fourth level of
our hierarchy for offline processing. The generated proxy layer could then enable
even more functionality while being offline.
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3 Elaboration Chapter

This chapter will discuss the challenges of enabling offline support for RESTful
systems. Afterwards, we will give some insight into the implementation of the
example server and client. Finally, we will explain additional approaches that
were discovered during this thesis.

3.1 Challenges

Section 2.5.1 mentions several challenges that have to be passed while enabling
offline support for RESTful systems. Some challenges were already discussed
within the research chapter and addressed by our prototype. However, we also
considered some solutions for the other challenges.

3.1.1 Hooks

Hooks are a common scenario in APIs. An example for API hooks could be email
notification if a resource was updated. When working offline hooks can not be
executed since the proxy does not know about them. Since the synchronization to
the backend is a replay of enqueued requests the hooks will be executed during
the replay. However, a hook execution may become irrelevant hours after the
request was handled offline on the client side. This can not be decided generally
for all hooks. The developer has to decide whether his API contains hooks that
can become irrelevant.

If the API contains hooks that can be ignored during request replay, the developer
has to ensure that every request contains a timestamp. This timestamp defines
when the request was originally triggered. The backend can then decide if a given
hook has to be executed or not. Another approach is to distinguish between offline
and online mode. However, this approach reduces the transparency.
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3.1.2 Authorization and Access Rights

Hypermedia links returned from the backend are generated depending on the user
role. Moreover, representations can be different for different user roles. The proxy
has to ensure that cached data of one user can not be accessed by another user.
Therefore, user specific storage has to be implemented. The dynamic creation of
hyperlinks could be achieved by the options endpoint. The options endpoint will
only return the accessible states for the requesting user role. If the user sends
a request to a forbidden state, the proxy will return a 503 - Service Unavailable
response since the proxy does not know the state.

3.1.3 Resource Subscriptions

Resource subscriptions are common practice for Web APIs. Without subscrip-
tions polling is the only way to detect changes. The client sends GET requests in
a given time interval to retrieve the latest resource representations. Most of the
polls are wasted since resources are not updated all the time. Therefore, many
APIs enable subscriptions to reduce the network traffic. The client can sub-
scribe a given resource and the server sends notifications to all registered clients
if an update occured. The clients can then request the resource to get the latest
representation.

If the client has offline support, the server needs additional functionality to handle
the notifications. If the server is not able to reach the client, the client has gone
offline. The notification has to be enqueued on server side for later delivery.
However, if the server resends the notification in a given time interval the same
drawbacks occur as is the case with polling.

Clients with offline support could be treated differently from those being online all
the time - except during failure. An offline working client has to synchronize its
data. During synchronization the client can also update all relevant subscriptions.
The server no longer has to enqueue notifications if it cannot reach the offline
clients. Another approach would be to unsubscribe from resources before going
offline. However, in case of flaky network connections the client may not be able
to unsubscribe. The server would therefore need a fallback method.

3.1.4 Resolution of Merge Conflicts

Multiple clients working on the same resources can lead to lost updates if not
handled properly. Therefore, conditional requests are used in RESTful APIs.
The client has to add an etag to writing requests. The server can determine
whether the client knows the latest representation and can either accept or refuse
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the modification. If the response has the status code 412 - Precondition Failed
the conflict handler of the prototype will be called. We offer two default imple-
mentations: firstly, the client wins handler and secondly, the server wins handler.
Moreover, custom implementations are possible but have to be implemented by
the developer.

A custom implementation would allow auto-merging of representations. Every
key value pair has to be checked separately. If the latest representation of the
server and the current representation of the client contain changes in different
key-value pairs an auto-merge would be easy. However, there are some issues
with embedded resources. One client could update the embedded resource itself
while another updates the enclosing resource. The auto-merging functionality has
to detect the conflict. Therefore, the etag of the enclosing resource also has to
cover the embedded resource. Otherwise, the changes of the embedded resource
will be overwritten.

3.2 Implementation Details

This section will cover details of the prototype implementation. Although the
prototype is a solution for clients of RESTful systems, we needed a working
backend in order to test the prototype. Therefore, we implemented a REST API
fulfilling the ε-NFA of Figure 2.2. The server side as well as the client side are
working in memory only. We did not implement any persistence accept for the
uploaded profile pictures. Those are stored on the hard disk.

3.2.1 The Server Side

The server side is implemented with jersey and jax-rs1. The class ResourceConfig
from jersey has to be extended for configuration. The ResourceConfig is used to
register all required classes for the REST API. To provide application specific
media types a converter class has to be registered. All service classes are also
registered.

We divided our implementation into multiple packages. The important ones are:
storage, states, services and models. The storage package contains the in-memory
storage for the resources. Since we only use hash maps to map IDs to resources
we do not go much into detail here.

The services package contains all service classes which provide the endpoints for
requests. An arriving request will be handled by the corresponding method of

1https://jersey.java.net
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the service class. Each method invokes the corresponding state of the ε-NFA and
starts the processing of the request. The state returns the requested response
and the service class forwards it to the client.

The states package contains the ε-NFA of the server. Therefore, we implemented
four abstraction layers. AbstractState is the first layer. It defines the default
methods every state must have. The next layer adds caching funtionality to the
states. The third layer contains the abstract classes for different http methods
and the last layer contains all concrete classes. Every resource has its own states
for each http method. Each concrete state class overwrites the method define-
TransisitionLinks() that defines all hypermedia links the client can reach from
this state.

The models package contains all resource models as well as additional views.
For example, the user resource has two different views: one including the pass-
word and another one without password. Every view extends the AbstractView-
Model<T extends AbstractModel> class. A view is a decorator that decorates the
underlying model. All getter and setter methods use the underlying getter and
setter methods except those for password in case of the user without password
view. The ViewConverter class is used to convert an object of a model into a
given view. The ViewMerger class is used to merge the latest representation of
the server with the representation attached to a writing request.

3.2.2 The Client Side

The client side is also divided into multiple packages. The important ones are:
cache, offline and sync. The cache package contains all classes needed for caching.
The offline package contains all functionality for offline execution of requests.
Finally, the sync package contains the code for data synchronization between
client and server.

According to our hierarchy in Section 2.5.2 the caching has to be persistent.
However, we did not implement a persistent cache within the prototype since we
would not achieve new knowledge from it for this thesis. The cache is implemented
as in-memory solution and stores all JSON representations as key value maps.

The offline package contains the ε-NFA of the proxy on client side. Since we
tried to avoid code duplication on the client side the ε-NFA is a generic one.
The client side also has four abstraction layers. The layers are analogue to the
server side: the first layer with all methods each state requires; the second layer
for caching; the third layer to define different behavior for each http method and
finally, the concrete state classes that use the in-memory cache. In contrast to the
server side we do not need concrete state classes for every resource since we use
a generic ε-NFA. In addition to the state machine this package also contains the
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client models. Those are finite sets of key value pairs and can be serialized and
deserialized by genson. The paging functionality for queries is also implemented
within this package.

The sync package contains the synchronization handlers as well as the conflict
handlers for data synchronization between the server and client side. Every http
method has its own synchronization handler. For example, a post request has
to fetch the representation of the created resource after it was executed. The
representation contains additional information like the actual ID and the etag.
Afterwards, the following put or delete request has to be updated in order to
use the actual etag for modification. Moreover, a put request has to replace
the etag of the following put or delete request as well. If conflicts occur during
synchronization the conflict handlers are triggered. The conflict handler has to
resolve the conflict and thus update the current request to allow execution. The
handler can also decide to drop the current request.

A client application using the proxy layer may have cached temporary links. The
proxy has to replace temporary links in requests if the corresponding resource
has already been synchronized. Therefore, the proxy has to know the mapping
of temporary links to actual links.

In case of failure the conflict handler can not recover. A CouldNotRecoverExcep-
tion will be thrown. After catching the exception a callback to the application
using the proxy layer will be executed. The callback gets access to the whole
queue containing all requests executed offline. The application can then decide
what should be done. Thus, the offline data will not be lost upon failure.

Since our prototype is written in java and only tested using test cases a class is
needed to decide whether the proxy is online. Therefore, we defined an interface
NetworkStatus with the method isOnline() which is used to determine whether
the proxy is in offline mode. Within the test cases we can thus easily switch
between online and offline mode without emulating flaky internet connections.

3.3 Additional Approaches

This section will explain two additional approaches for enabling offline support for
RESTful systems. Since we could not implement prototypes for every approach
within this thesis, these approaches need additional thoughts and verification.
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3.3.1 Using Code-On-Demand

Fielding (2000) defined the code-on-demand constraint as optional for RESTful
systems. Modern web pages use this code-on-demand functionality by retrieving
javascript from the servers. However, this constraint allows to enable offline
support in RESTful systems. The client asks the server to deliver the code
needed to work offline.

This approach allows to enable offline support on the fifth level of our hierarchy.
Although the code is placed on the backend, it is very application specific. More-
over, the developer has to implement the features both for the client side and the
server side.

This approach cannot be used for every use case. Reloading code during runtime
is not allowed on every platform. iOS applications are not allowed to download
additional code that adds functionality2. Therefore, this approach can be used
within a company that can deploy the app without app store for their employees.
However, if an app should be sold in app store, this approach is not applicable.

3.3.2 Using Servers Emitting Templates

Amundsen introduced another approach to implement hypermedia clients in his
talk at NDC Oslo3. Within this talk he explained how to eliminate code from
the client. Since code on the client produces tight coupling with the service
Amundsen tries to reduce the amount of code needed on the client. He moves
specific knowledge of addresses, inputs and workflow out of the client app and
places it into the message. Therefore, all relevant information is emitted by the
server. Amundsen implemented a hypermedia client with hypermedia templates.
He got the server to emit templates and the client to use the server’s templates.

We had the idea to also use those templates for offline support. Amundsen’s
templates contain a description of all functionality that can be done with a given
resource. Adding information for the client about what to do in offline mode
would be possible. However, the client would still need code for storing the data
persistent or queueing requests. Furthermore, this approach does not eliminate
the known challenges, although user rights could be handled more easily, since
the server could consider them during template creation. Another drawback is
the client would only have access to the templates that were cached while working
online. Moreover, the offline support would no longer be hidden from the backend.

2https://developer.apple.com/app-store/review/guidelines/
3http://amundsen.com/talks/2015-06-ndcoslo/
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Appendix : Offline Support for Microservices

3.4 Offline Support for Microservices

This thesis focuses on offline support for human-driven hypermedia clients. How-
ever, we had some thoughts on machine-driven hypermedia clients. Amundsen
distinguishes between those two kinds in his upcoming book Learning Client
Hypermedia, since both kinds have different challenges4. Compared to our pro-
totype, intelligent merging strategies are needed for machine-driven hypermedia
clients. Our prototype uses a callback function to ask the user of the application
for help if the conflict cannot be resolved by itself.

Microservices are often designed as RESTful systems. Most of them provide an
API that can be used by applications. However, there are microservices that are
also used by other microservices. For example an authentication service will be
used by other microservices rather than by the user application itself. Enabling
offline support for microservices is different for human-driven and machine-driven
hypermedia clients. Moreover, offline support might not be reasonable for every
microservice.

4http://amundsen.com/blog/archives/1157
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Appendix A: Deployment Manual

Appendix A Deployment Manual

The implementation of this thesis contains a fully functional server, a client proxy
layer and test cases using this proxy layer. The server as well as the proxy layer
only work in-memory, no data is stored persistently. In order to run the test cases
properly the server has to be deployed on an application server like tomcat. Since
the project is a maven project it can easily be done by maven. The pom.xml is
configured to deploy the backend on the application path /todolist. We are using
the tomcat 7 maven plugin from apache.

The command to deploy the backend for the first time is mvn tomcat7:deploy.
Afterwards, the backend has to be redeployed, so just use mvn tomcat7:redeploy
instead. Please note that it is necessary to have a correct settings.xml file in the
.m2 directory. Listing 3.1 shows our settings.xml that worked for deployment via
maven.

Listing 3.1: Example of settings.xml for Maven.
<settings>
<profiles>
<profile>
<id>compiler</id>
<properties>
<JAVA_1_8_HOME>PATH-TO-JAVA-HOME</JAVA_1_8_HOME>
</properties>

</profile>
</profiles>
<activeProfiles>
<activeProfile>compiler</activeProfile>
</activeProfiles>
<servers>
<server>
<id>tomcat-localhost</id>
<username>username</username>
<password>12345</password>

</server>
</servers>
</settings>

After the deployment of the backend on localhost the test cases can be executed.
If the backend is not deployed on localhost the base url in the class TestBase.java
has to be replaced.
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Content of the CD

Appendix B Content of the CD

The CD contains the source code of this thesis as well as the source latex files.
Therefore, two folders exist: latex and source. The source code can be deployed
as described in A. The PDF file of this thesis was compiled using TeXLive-2016
as system-wide TeX distribution on Mac OS X El Capitan.
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