
Friedrich-Alexander-Universität Erlangen-Nürnberg
Technische Fakultät, Department Informatik

MARTIN HOFMANN

MASTER THESIS

TEXT MINING FOR RELATIONSHIP
EXTRACTION

Submitted on May 18, 2017

Supervisors: Andreas Kaufmann, M. Sc.
Prof. Dr. Dirk Riehle, M.B.A.

Professur für Open-Source-Software
Department Informatik, Technische Fakultät
Friedrich-Alexander-Universität Erlangen-Nürnberg

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer
als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder
ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von
dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen,
die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, May 18, 2017

License

This work is licensed under the Creative Commons Attribution 4.0 International
license (CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Erlangen, May 18, 2017

i

https://creativecommons.org/licenses/by/4.0/

Abstract

Qualitative Data Analysis (QDA) methods are based on manual coding of texts.
To extract a domain model from a text corpus using QDA, information has to
be extracted and compiled into the domain model by hand. This is especially a
problem for cases where large amounts of data have to be analyzed.

For this purpose, We present a relationship extraction approach based on Natural
Language Processing. It automates the extraction of relationships between codes
that were provided by the coder. This speeds up the analysis process and helps
to uncover relationships the human coder might have missed.

Our method produces a graphical overview of relationships that were found to
exist between codes. It is evaluated by comparison with previously generated
models from existing Qualitative Data Analysis projects.

iii

Contents

1 Introduction 1
1.1 Original Thesis Goals . 1
1.2 Changes to Thesis Goals . 1

2 Research Chapter 2
2.1 Introduction . 2
2.2 Related Work . 2

2.2.1 Relationship Extraction in Software Engineering 3
2.2.2 Relationship Extraction in Medicine 3
2.2.3 Conclusion . 4

2.3 Research Question . 4
2.4 Research Approach . 5

2.4.1 Introduction . 5
2.4.2 Data Model . 6
2.4.3 Input . 7
2.4.4 Relationship Extraction Techniques 7
2.4.5 Inference of Relations in the Code System 15
2.4.6 Code System Clean-Up 15
2.4.7 Output . 17

2.5 Used Data Sources . 18
2.6 Research Results . 18

2.6.1 Clustering Algorithm . 19
2.6.2 Dependency Trees Rules 19
2.6.3 Code System Relationships 22
2.6.4 All Methods Combined . 23

2.7 Results Discussion . 23
2.7.1 Results and Limitations 23
2.7.2 Further Work . 25

2.8 Conclusion . 26

3 Elaboration Chapter 27
3.1 Finding Relationship Candidates 27

v

3.1.1 Sentence Parsing . 27
3.1.2 Clustering Algorithm . 29

3.2 Matching Codes to Linguistic Entities 32
3.2.1 Look-Up Table Approach 32
3.2.2 Weighting with WordNet 33
3.2.3 Web Search Engines as Knowledge Bases 36

3.3 The Code System . 39
3.3.1 A Code System Meta Model 39
3.3.2 Code Naming Conventions 40
3.3.3 Impulses for Future Research Work 42

Appendices 45
Appendix A Overview over the Software Artifact 45

A.1 General Information . 45
A.2 Architecture . 45
A.3 Scripts . 45
A.4 Parameters . 46

Appendix B Bill of Materials . 51

Glossary 53

Acronyms 54

References 55

vi

List of Figures

2.1 Overview over the NLP pipeline of the prototype 5
2.2 Example of a dependency tree parse 8
2.3 Illustration of the sliding window algorithm 9
2.4 Look-up process for a linguistic entity e leading to a set of codes C. 12
2.5 Relationships extracted by the clustering algorithm using different

modes for relationship creation. 19
2.6 Effectiveness of the dependency tree algorithms. 20
2.7 Effectiveness of improvements to the sliding window algorithm for

dependency trees. 21
2.8 Effectiveness of various values for the sliding window boost. . . . 21
2.9 Effectiveness of entity-code table lookup improvements. 22
2.10 Effectiveness of adding additional knowledge bases to the entity-

code table. 23
2.11 Number of relationships extracted purely from the code system

hierarchy (y-axis adjusted for readability). 24
2.12 Results of combining all three sources of relationships in the Qual-

itative Data Analysis (QDA) project. 25

3.1 Sequence of the clustering steps performed on a set of eight integers
by recursively dividing. 31

3.2 Entity-code table structure . 33
3.3 Example of the Shortest Ancestral Path algorithm 36
3.4 Mistaken PoS parse . 41

vii

List of Tables

2.1 Look-up methods in the entity-code table 13

3.1 Query options used for the Bing API. 38
3.2 Undirected relationships and their correlation with the Label meta

data annotation of the used codes. 40
3.3 Parameters in the configuration file of the prototypical relationship

extraction system. 47
3.4 Dependencies of the prototype implemented in the course of this

thesis. 51

viii

1 Introduction

1.1 Original Thesis Goals

The goal of this thesis is to implement a prototypical Natural Language Process-
ing pipeline specifically for extracting relationships from qualitative data analysis
projects. Given a qualitative data analysis project, the tool should be able to ex-
tract relations

1.2 Changes to Thesis Goals

The thesis goals were not changed.

1

2 Research Chapter

2.1 Introduction

QDA is a research technique often found in social studies. A key part of this
method is the annotation of a text corpus with a set of codes that are structured
in a hierarchical code system. The documents in the text corpus can for example
be interviews or scientific papers. Based on the results of the annotation process,
a theory can be formed.

As a result of this process, a domain model that shows the relationships of entities
in the code system can be created. Although the annotation process and the
subsequent investigation of the code system are supported by computer software
such as MaxQDA, much manual work is involved.

The drawback of this method is the need for time-consuming manual extraction
of relationships in the code system as well as the possibility of human error.

In this thesis, we create a prototypical implementation of a tool that can au-
tomatically extract relationship information from a QDA project that has been
annotated with codings. The contributions of this work are:

• We explore the application of Natural Language Processing (NLP) relation-
ship extraction techniques to a QDA data set.

• We identify different sources for relationships in the data set.

• We show opportunities for further research in this area.

2.2 Related Work

Relationship extraction has been a popular research topic in NLP. We have found
applications to be mostly centered around two domains: The automatic extrac-

2

tion of domain models from natural-language requirements in software engineer-
ing, and the analysis of research documents and patient data in medicine.

2.2.1 Relationship Extraction in Software Engineering

A system to extract conceptual data models from user requirements was first
proposed by Black (1987). They propose a requirements engineering tool that
can automatically build entity-relationship (ER) models from natural language
requirements. The requirements are obtained through a dialog with the domain
expert.

With the rise of standardized software engineering techniques, extraction of model
information from requirements gained traction in the 1990s. Ambriola and Ger-
vasi (1997) show a complex, web-based environment for requirements engineering
with the ability to build object diagrams. Their system works on Italian texts. A
predefined glossary of verbs is used to parse requirements from natural-language
texts. The glossary does however not include domain-specific terms, making the
system domain-agnostic.

Omar, Hanna, and McKevitt (2004) propose a fixed set of heuristics that aim to
extract ER models from text, including both entities and relationships. However,
they evaluate their methods only on a restricted test corpus of short text snippets
taken from problem statements in exams and textbooks.

Du and Metzler (2006) expand on the use of heuristics to extract possible relation-
ships from a text corpus. Unlikely relationships are removed by using WordNet
as a knowledge database for entity identification and the Google Web Search
corpus.

The methods employed in the domain of software engineering all work on a re-
stricted subset of natural language: Ideally, relationship information can be found
in short sentences following a pre-defined pattern. This is also the case in newer
work such as a paper by Robeer, Lucassen, van der Werf, Dalpiaz, and Brinkkem-
per (2016) where NLP is applied to user stories with the aim of creating a model
that shows relationships between the entities mentioned in the user stories.

2.2.2 Relationship Extraction in Medicine

In medical science, large quantities of data are available regarding molecular re-
actions of diseases and medication in patients’ bodies. Relationship extraction in
this area often focuses on building knowledge bases focused on observed connec-
tions between biochemical agents or genes (Garten & Altman, 2009).

3

Another area of work is the extraction of findings from sets of patient records. In
a study by Roberts, Gaizauskas, and Hepple (2008), oncology patient narratives
were analyzed in such a way using a supervised machine learning system. In this
study, the task of entity recognition was assumed to perform perfectly to ease
evaluation of the system.

More recent studies focus on the combination of rule-based systems with machine
learning approaches (Quan, Wang, & Ren, 2014), aided by the size of the available
biomedical corpus.

For relationships to be identified correctly, entities must be recognized in the
text so that they can be connected by a relationship. In the area of medical
literature, this task is often simplified by the fact that protein and gene names
follow a unique naming scheme.

2.2.3 Conclusion

In contrast to the studies shown above, where the names of entities taking part
in the relationship are extracted directly from the text corpus, we need to find
relationships in a fixed set of entities from the code system, which do not neces-
sarily match the entities in the text corpus. However, we have the advantage of
using the code system structure of the QDA project as additional data source.
Due to our limited data set, we decided to rely on a rule-based approach.

2.3 Research Question

We investigate the use of NLP relationship extraction techniques to extract rela-
tionships from a QDA project with the goal of automatically creating a domain
model.

Additionally, we are interested which aspects of a QDA project contain informa-
tion about relationships. We analyze a QDA project and identify different areas
of the project that contain relationship information, and the methods which are
suitable to retrieve relationship information. Accordingly, we implement a pro-
totype to evaluate the efficiency of these methods.

We evaluate the accuracy of our methods by comparing the relationships to do-
main models that were generated by human coders. Based on our results, we
identify opportunities for further research in the area.

4

2.4 Research Approach

2.4.1 Introduction

The program created in the course of this thesis is written in Java and makes
use of the Stanford CoreNLP library to perform various NLP tasks. As input, it
accepts a MaxQDA file and a directory of documents which may be in RTF or
PDF format.

MaxQDA File
Cluster Analysis

Dependency Tree Analysis

Code System Analysis

Internal Multi-
Graph Model

Domain Model

Figure 2.1: Overview over the steps taken to extract a domain model from a
QDA project.

A mixed multi-graph is used internally to store information about possible re-
lationships between codes in its edges. We will refer to each such edge as a
relationship candidate. The edges are weighted, which allows to adjust the like-
liness of a specific relationship during the run of NLP pipeline.

In total, three different aspects of the QDA project are used to extract relationship
information:

• The locality of the codings in the documents is used via cluster analysis.
The rationale behind this analysis is that codes that occur in close neigh-
borhood in the texts are likely to be related.

• The text corpus is taken as a principal source for relationships. The NLP
pipeline identifies relationships between nouns in the texts using depen-
dency tree parses. Based on whether a noun taking part in the relationship
is located in a coded text segment (and therefore being related to a code),

5

and co-occurrence of nouns and codes in the text corpus, relationship in-
formation for the code system is inferred. This creates a basic model of
possible relationship candidates in the code system.

• Finally, the code system that is contained in the QDA project is used as a
source for relationships. Here, structural information such as child-parent
relationships in the code system tree is exploited. Code names are also
analyzed for relationships.

After building the graph of relationship candidates, codes that are not suitable
for the model are removed from the code system. The mixed multi-graph is then
transformed to a mixed graph (without any parallel edges). In this step, the most
promising relationship candidates are chosen.

Finally, a graph of found relationships between code system entities is produced
as a simple “boxes-and-lines” figure in PDF format.

2.4.2 Data Model

The internal representation of all relationship candidates is stored as a mixed
multi-graph G = (V, E, A). In a mixed graph, both undirected edges (set E) as
well as directed edges (set A) are possible.

In our case, the set of vertexes V corresponds to the codes in the code system.
The directed component of G is a multi-graph, so that multiple edges between
adjoining nodes are possible. Each edge a ∈ A between nodes v1, v2 ∈ V is a
quadruple

a = (v1, d, O, v2)
with d being a string describing the relationship between the edges. Often, these
strings are verb phrases such as “depend on”.

O is a set used to store the information source that backs this relationship. The
set of values maps to the possible origins of relationships:

O ⊆ {CLUSTER,DEPENDENCY_TREE,

CODE_SYSTEM_NAMING,CODE_SYSTEM_HIERARCHY}

The clustering algorithm for relationship extraction is detailed in Table 2.4.4 and
dependency trees are explained in subsection 2.4.4. For use of the code system
naming conventions and the code system hierarchy as relationship source, refer
to subsection 2.4.6 and subsection 2.4.5 respectively.

Additionally, a weight value w is stored for each edge:

wdir : A→ R

6

This edge weight is used to describe the level of importance of the edge and
is modified through factors such as the occurrence count of this relationship
instance in the text corpus. The use of a multi-graph allows to store multiple
relationship candidates for each pair of vertexes. During the run of the NLP
pipeline, the weight value wdir can be incremented in case supporting evidence
for the correctness of a certain relationship is found.

The undirected component E of G is used to store possible undirected rela-
tionships (“associations”) between pairs of code words that can be created by
the coding cluster analysis. Contrary to directed edges, multiple edges between
nodes are not allowed here. Also, there is no description affixed to undirected
edges. However, similar to directed edges, a weight value wundir is stored for
each undirected relationship in E. This allows to extract the most promising
relationships.

2.4.3 Input

The prototypical application written for this thesis accepts files created by MaxQDA
version 12 as input. Each MaxQDA file contains the code system hierarchy and
coding annotations for documents. The documents are supplied separately either
in PDF or RTF format.

2.4.4 Relationship Extraction Techniques

The NLP pipeline applies three main techniques for extracting potential relation-
ships: A rule-based dependency tree parser on sentence level extracts relation-
ships from the text corpus based on grammatical relations of words in sentences.
A clustering algorithm uses the location and grouping of codings in documents
as a source for relationships. Additionally, the structure of the code system itself
is used to create relationships between ancestors in the code system.

Dependency Trees

Dependencies describe the grammatical relation between different entities in a
sentence. A dependency relation is classified by an origin, a description, and a
target. In this way a so called semantic tree can be constructed for each sentence.

For this thesis, we use the Enhanced++ dependency algorithm shipped with
Stanford CoreNLP as described by Schuster and Manning (2016). An example
for such a dependency tree can be seen in Figure 2.2. The verb “depends” is the
root of the dependency tree. It is attached to the subject of the sentence by the

7

OSS

NN

depends

VBZ

on

IN

voluntary

JJ

contributions

NNS

.

.

root

nsubj

punct
nmod:on

case
amod

Figure 2.2: Example dependency tree parse for the sentence “OSS depends
on voluntary contributions.”. Dependency labels are attached to their respective
edge. The part of speech (PoS) tags are displayed below the respective words of
the sentence.

nsubj tag. The modifier “contributions” can be found by following the nmod edge
in the dependency tree.

Based on the dependency trees, a rule-based approach is employed to extract
potential relationships from sentences. There are two modes to determine the
sentences that are analyzed: The basic algorithm that uses all sentences in the
text corpus, and the sliding window algorithm as an improvement that narrows
down the set of sentences to scan.

The sliding window filters the text corpus for sentences with a valid coding anno-
tation. This way, sentences without a coding – that have been deemed irrelevant
by the human coder – are removed. In addition, we allow a configurable num-
ber of sentences before and after each sentence with a coding annotation to be
accepted into the set of valid sentences. These look-ahead and look-behind pa-
rameters allow the text surrounding the coding to be treated as a paragraph that
is topically related to the sentence that contains the coding.

Figure 2.3 shows an example of the sliding window. Within the blind text one
word has been annotated with a coding, shown red. The sentence containing
the coding is accepted by the sliding window algorithm as overlap. Addition-
ally, one sentence before and two sentences after the overlap are extracted as
look-behind/look-ahead, leading to a total number of four sentences that will be
scanned by the dependency tree rules.

We also use the sliding window algorithm to increase the weight of the code that
is attached to the coding annotation when finding relations in the code system:
Codes that are directly attached to the sentence containing a statement about a
relation are more likely to take part in that relation as either subject or object.

For each sentence selected by the sliding window filter, we retrieve its dependency
tree. Pattern matching is then used on the set of dependency tree rules. After

8

look-behind
overlap

look-ahead

Sl
id
in
g
W

in
do

w

Text

Figure 2.3: Example for the sliding window algorithm with a look-ahead of
two sentences and look-behind of one sentence. One sentence in this part of text
contains a coding annotation (highlighted red). A total of four sentences are
within the sliding window.

the first matching rule, the search for further matches is canceled.

For the example sentence shown in Figure 2.2, a rule that identifies the subject
using the nsubj and the object using the nmod tag is suitable. This results in the
dependency

OSS depends_on−−−−−−→ contributor
by using the preposition “on” in combination with the verb as description of the
relationship.

We have identified several more patterns of dependencies frequently correlating
with meaningful relationships within a semantic graph. Each pattern starts at
the root of a dependency tree. The patterns can be separated into to two groups:
Patterns with a verb as their root node and a pattern to match sentences with
an adverb as their root node.

In the following section, names of individual dependencies follow the Universal
Dependencies standard as described by Silveira et al. (2014).

We have identified the following patterns:

Nsubj-Dobj-Rule The nsubj dependency points to the subject of the clause.
The dobj is the direct object of the sentence. Therefore, this is the most
simple statement-type of sentences.

Nsubj-Nmod-Rule This rule links a subject using the nsubj relationship to a
noun phrase that extends the meaning of a verb using the nmod. This noun
phrase is not an object of the sentence, but a noun modifier. As the verb
links the subject to this noun phrase, we treat the noun phrase as object
for our relationships, although this is grammatically no object relation.

9

Nmod-Nsubjpass-Rule In passive statements, the order of the noun phrases
is reversed: nsubjpass points to the logical object of the verbal clause, nmod
is used for its subject.

Nsubj-Dobj-Linked-Verbs-Rule This rule is used to extract relationships from
sentences that connect multiple verbal clauses with conjugations. As an ex-
ample, consider the following sentence:

Hence, most modern corporations of today heavily utilize and
often develop software systems or their customizations.

Here, the root of the semantic graph utilize is connected to the verb develop
with a conjugation. To gather the objects of the relationship, this rule
follows conjugations determined by the conj dependency.

Ccomp-Sentence-Rule Some statements themselves contain a dependent clause
with its own subject or object. From the root of the semantic graph – the
verb of the statement – a ccomp dependency is used to identify the depen-
dent clause. Consider the following sentence:

Studies show that contributors develop Open Source systems in
a joint effort.

Here, the real information is not the statement about studies, but the mes-
sage about contributors in Open Source software.

AdverbialRoot-Nsub-Nmod-Rule This rule matches sentences that have an
adverb as root node of the dependency tree, contrary to the default verb
root.

If both object and subject of such a relation are nouns, we add this relationship
to the set of relationship candidates. If at least one of the entities participating
in the relationship is not a noun, we attempt to resolve this instance to a noun.
For this purpose, we use the statistical coreference resolution system contained
in Stanford CoreNLP as described by Clark and Manning (2015).

Relationships generated in such a way are described by the verb connecting the
subject and object in the semantic graph.

The rule-based approach used here works well for finding relationships that are
encoded in explicit statements. Additionally, it allows to find a description for a
relationship by using the verb used explicitly in the statement. A limitation of
this approach is however the use of complicated sentence structures or implicit
meaning in sentences.

10

Matching of Dependency Tree Relationships to Codes

The dependency tree rules described in the previous section do not extract rela-
tionships between two codes directly. Instead, a relationship instance is identified
using the nouns of the text occurrence it was taken from, which we will refer to
as linguistic entitites. Therefore, an additional step is necessary to infer relation-
ships between the codes of the code system.

In the software we implemented, this step is based on a look-up table that matches
linguistic entities to the corresponding codes. The table is populated before the
dependency tree run. Each key, representing a linguistic entity, maps to multiple
possible codes that may be used for this entity.

Building the Entity-Code Table To generate the table, we identify linguistic
entities in the text corpus by their Penn Treebank Tag (Marcus, Marcinkiewicz,
& Santorini, 1993). We identify nouns using a generalized PoS tag, taking only
the first two characters of the tag into consideration. This way, all possible noun
tags (NN, NNS, NNP, …) are reduced to NN. Compound nouns are identified
by using the dependency tree parse in combination with the dependency type
compound.

If the noun in question is annotated with a coding, it is added to the look-up
table with the corresponding code. To give an indication of the applicability of
a certain code for a linguistic entity, a frequency counter is stored for every pair
of entity and code.

To expand our knowledge of entities matching a code we use the so called doubly-
anchored pattern (Kozareva, Riloff, & Hovy, 2008). It uses a web search engine
to find additional instances of a concept, using the internet as a corpus. To find
these new entities, a web query containing both the concept (in our case the code)
and a seed instance (in our case the entity extracted from the text) are used as
search term. New instances are then extracted from the snippets of the search
results by pattern matching.

Look-Up Process Within our application, the look-up process is configurable.
It can be performed in varying grades of detail. The look-up expects a linguistic
entity e as input. It produces a list of codes, each code c having an attached
weight that corresponds to the frequency count of e and c during the creation of
the look-up table.

Configuration options for the look-up process contain exact matching of entity
names, stemming or lemmatizing them. Each of the options can be combined with
the right-hand-head-rule as explained byWilliams (1981). This rule allows to split

11

(e1, v, e2)
Simple Relation from Dependency Tree

Decompounding,
Stemming

or
Lemmatization

Entity-Code Table

WordNet Weight Adjustment
or

Web Search Weight Adjustment

Quantile Filtering

Direct Coding Substitution

(e1, {(cj, w′
j), . . . }), (e2, {(ck, w′

k), . . . })
Weighted list of codes for entities

∀ei ∈ {e1, e2}

Look up ei

Set of weighted codes (cj, wj)

Adjusted weight (cj, w′
j)

Figure 2.4: Look-up process for a linguistic entity e leading to a set of codes C.

compound nouns to generalize the meaning of the noun phrase. Table 2.1 shows
the effect of the options applied to the example entity “software development
processes” (note the plural form of “processes”).

After the look-up, the weight of each code for an entity is adjusted by their
distance in the WordNet database. To calculate this distance we experimented
with two different measures: We use a strict hypernym/hyponym1 distance or the
Shortest Ancestral Path, the path distance of two words over a common ancestor
in the WordNet tree.

In addition to WordNet, we offer the possibility of using a Web Search engine
for weight adjustments. As we retrieve candidate codes for each entity, we send

1A hypernym is a more generic term for a specific term (the hyponym), such as “house” to
“castle”.

12

Without RHHR With RHHR
Lemmatization “software development pro-

cess”
“software”␣“development”
␣“process”

Stemming “softwar develop proc” “softwar”␣“develop”
␣“proc”

No transforma-
tion

“software development pro-
cesses”

“software”␣“development”
␣“processes”

Table 2.1: Example of looking up the entity “software development processes”
with different methods. ␣ signifies the location of possible split of a compound
noun.

a search query for each pairing of entity and code. We then use the result count
of the search engine to adjust the weights. Pairings with a low result count are
rated lower compared to entity-code pairs with a high result count. To adjust for
unlikely entity words (which are not often found on the web), we calculate the
weights locally, and compare them only in regards to the specific entity.

In addition to linguistic modifications to the search term, we allow a quantile-
based filtering. It restricts the result set of codes for a certain entity to those
codes which are in the upper n percent of all entity-code mappings. Using this
step, spurious correlations of codes for certain entities are eliminated.

If no code could be found by the entity-code table, we substitute the entity with
the code attached to the text that is currently overlapped by the sliding window.
If multiple codes have been found in the sliding window, we add all those codes,
as they are all valid candidates for relationships. This information is retrieved
by the sliding window algorithm as described in the previous section.

Coding Clusters

The dependency tree rule approach is suitable for semantically well-formed state-
ments in natural language. Some documents, however, do not use such language.
A notable example would be the use of presentation slides. Within our data sets,
several slide sets contained information on specific topics which could not be
found elsewhere. Within these slides, all textual information is encoded in bullet
point lists. However, we do not have structured information about the hierarchy
of the bullet point items. This is caused by using PDF as document format,
which is mainly a presentation data format and focused on transporting layout
information. Structure information is optional in PDFs (Withington, 2011).

It is however apparent that the location of codings in the document may be used
to infer relationships in the affected code words: Code words in close neighbor-

13

hood are related. In contrast to the usage of dependency tree rules and their
ability to parse the verbs in sentences, the name of relationships based only on
locality information cannot be determined automatically. Regardless, this infor-
mation can still be useful in further refining a model in an additional step after
the automatic extraction of relationships by dependency trees.

The problem of finding coded text segments which are close to each other breaks
down to a one-dimensional clustering problem on a set of integers. To form this
set of integers, the starting offset of each coding in the document is used as
identifier for coding. A neighboring group of codings in this set can then be seen
as a cluster.

Traditional clustering algorithms, such as the k-means algorithm, are often op-
timized for their use in multiple dimensions and require the number of clusters
to be found as parameter. Especially the latter is not the case for our problem:
The number of coding clusters in a document cannot be determined a priori.

Therefore, a custom algorithm based on hierarchical descend is used. The algo-
rithm exploits the fact that a total ordering of the input array can be achieved
due to it being composed exclusively of integers. A termination condition based
on the local density of a cluster is used to cancel the recursive descend.

For each document, a set of clusters of codings is generated. This cluster infor-
mation must then be incorporated into the relationship model. Relationships can
be added either as being directed or as being undirected. We experimented with
three different modes of adding relationships from one cluster, influencing both
direction and number of relationships:

First-to-Children In this mode, a relationship is added between the first item
of the cluster (e.g. the item with the smallest offset in the document) and
each of its successors. This way, a hierarchical relation between the first
mentioned code and its successors can be modeled: The first code in the
cluster is related to all its successors.

Children-to-First This mode adds relationships to the first item in the cluster
from all its successors. It only differs from the First-to-Children mode for
directed relationships.

Cartesian In this mode, a relationship is added between each of the items in
the cluster. Using the cartesian product of all codewords used in the cluster
stresses the relatedness of items in a cluster.

14

2.4.5 Inference of Relations in the Code System

Code System Ancestors

The code system itself represents a hierarchy of concepts. This hierarchy is
created by the coder and contains a high information density.

The structure of the code system depends on the coding standard used by the
coder. However, children often represent a specialization of their parent node,
e.g. a “is-a” relationship exists between a child and its parent node.

To harvest this information, a step was included in our NLP pipeline that adds
relationships based on the code system hierarchy. Such relationships are assigned
an origin tag of CODE_SYSTEM_HIERARCHY. In our prototype, relationship
candidates from this source are weighted particularly high, because they are
created by the coder and therefore influenced by their a-priori knowledge.

2.4.6 Code System Clean-Up

After potential relationships between codes have been added gathered, we remove
codes that are not suitable for use in the model. A code may not be suitable if it
describes an action instead of an entity or if it was not intended to be used in the
model by the coder. In the latter case, a naming pattern or the depth of the code
in the code system tree is used. If a code is removed, relationships that this code
is a part of are redirected to the parent code in the code system hierarchy. This
way, we ensure that no relationship information gets lost when removing codes.

The need for such an additional processing step depends on the structure of the
code system that is used. As there is no default structure for code systems, the
applicability of the methods presented in this section varies between different
projects.

Removal of “Action Codes”

Some codes in the code system do not represent entities, but instead represent
an action. This action may, in turn, relate to another entity in the code system.
Such codes are easily identifiable by having a leading verb in their name and are
called “action codes” in this thesis.

An example for such a code is the code find Stakeholders in the Inner Source
data set by Salow (2016). This code does not represent an entity. Instead, it
describes a relationship between its parent code and another entity “stakeholders”.

15

To eliminate such codes from the code system, a depth-first traversal of the code
system hierarchy is performed. If a code name does match the pattern <verb>
<object>, it is eligible for removal. If another code can be found that corresponds
to the object due to name equality, a relationship is added in the model between
the parent of the code to be removed and the found object. This relationship is
named after the verb of the code.

Relationships whose edges are incident to a removed code is redirected to the
parent code word. The depth-first traversal algorithm also ensures that a cas-
cading removal of codes starting from the bottom of the code system hierarchy
is possible.

Removal of Codes Deep in the Code System Hierarchy

Code systems are trees of codes. We found, that in our data set codes with a
high depth in the code system are specializations of their parent codes2. Code
systems with a fine-grained code system often have only a small number of coded
text segments attached to each individual code. This means that meaningful
relationships cannot be extracted from them, as too few relationship candidates
corresponding to them are found.

In such cases, codes very deep in the code system hierarchy are removed and their
relationships are moved to their parent codes. These parent codes represent more
general concepts and gather more relationship candidates by using this method.

The heuristic of using the depth of codes is superseded by the method described
in the next section. Its advantage is that it can be used regardless of the naming
conventions of codes.

Removal of Codes by Pattern

In some cases the set of codes that should be removed to create the final rela-
tionship model cannot be filtered finely enough by the methods in the previous
sections. Therefore, we propose an additional filter in this section. This method
allows to remove codes that do not match a pattern provided by a regular ex-
pression. The applicability of this method is however restricted by the facts that

(a) a suitable filter condition must be derivable from the naming of the codes,
and

(b) the regular expression used for filtering must be provided by the user.
2This rule is only an approximation and can not be generalized to other projects. Ideally,

these relationships should be encoded in the coding guidelines before of annotating the text
corpus.

16

As an example, our evaluation data set uses a numerical identifier in the code
name for all the entities that can be used in the model. By constructing a suitable
regular expression, invalid codes can be removed efficiently from the model.

Redirection of relationships from and to codes that need to be removed is per-
formed in as described in subsection 2.4.6.

2.4.7 Output

Reduction of Model to Graph

The in-memory representation of the data model that has been created by the
information extraction steps of the program cannot be used as a graphical rep-
resentation. It consists of a mixed multigraph with weighted edges, where every
edge is a potential relationship. In the final relationship model, only at maximum
one edge should exist between two codes. This improves legibility and allows the
model to be understood by the end-user.

Therefore, the internal relationship model must be transformed from a mixed
multigraph to a mixed graph. The transformation should be targeted at optimiz-
ing two main criteria:

1. Suitable edges should be selected. In the internal data model, each rela-
tionship candidate is weighted. Only the most likely relationships should
be chosen for the final model.

2. The graph density of the result should be kept relatively low. Too dense
graphs are prone to poor graphical representations and may be illegible to
the end user.

For undirected edges that can be created by the coding cluster analysis method,
we sort all undirected edges in the model by descending order by their weight.
From this list we then take the top m edges, as these are the edges with the
greatest confidence.

For directed edges, the algorithm minimizes the problem of “shadowing” directed
edges. By regarding every possible directed edge (with its name and its weight)
on its own, and selecting the top n edges by weight, some important edges will
not be identified. A relationship candidate e1 between two nodes, where no
other parallel candidate relationships have been found, can be chosen instead of
a relationship e2 with a lower weight, but with multiple parallel relationships
candidates between its adjacent nodes. The sum of the weights of all parallel
relationship candidates similar to e2 is higher than that of only e1, so that a
relationship between its nodes is more likely.

17

Therefore, the algorithm uses the sum of all possible edges between two adjacent
nodes to determine which codes need to be related to each other in the model. The
name of the relationship is determined by the single highest weighted relationship
candidate between the two nodes.

Additionally, the model to graph algorithm for the mixed multi-graph model
prevents overlapping directed relationships in the opposite direction between two
nodes. Instead, only the edge with the largest weight regardless of direction is
chosen.

Generation of Graph Figure

The output of the program is a directed graph which allows only single edges
between nodes. The graph is serialized to the GraphVIZ format (Gansner &
North, 2000) and a PDF graphic with layout is created with an automatic graph
layouting algorithm.

2.5 Used Data Sources

The data source used to evaluate and develop the relation extraction was a the
QDA project “Inner Source”. Salow (2016) created a finished domain model in
the form of a UML diagram that was used as the gold standard to evaluate our
work.

We used WordNet as described in (Fellbaum, 1998) to measure the relatedness
of words. WordNet is a lexical database of that links words by their meaning.

In addition to WordNet, we also queried the Microsoft Cognitive Services Bing
Web Search API as described at (“Microsoft Cognitive Services – Bing Web
Search API,” n.d.).

2.6 Research Results

Our prototype is highly configurable. In this section, we examine the individual
parts of the algorithm and their configuration options and then present general
results for the accuracy of our method.

One limitation of our method is the need to specify the number of relationships
that should be extracted from the QDA project as a parameter. Therefore, preci-
sion and recall scores often used in benchmarking information retrieval methods
are the same. For this reason, we give the accuracy of our method as the number

18

of correctly identified directed relationships. A total of 46 such directed relation-
ships were present in the gold standard.

2.6.1 Clustering Algorithm

The clustering method allows us to create relationships based on the location of
codings in the documents. We implemented three modes to add relationships to
the internal data model. Their results are shown in Figure 2.5. Adding rela-
tionships from the first code in the cluster to its successors was least successful,
as two thirds of those relationships were reversely orientated, while 13 % of re-
lationships could be identified. Adding relationships from the successors to the
first code was more successful, with only one sixth of the relationships being re-
versed while the number of relationships stayed the same. Adding the Cartesian
Product of the code set of a cluster as relationships improved accuracy minimally
by one additional relationship being found to a total of 15 % correctly identified
relationships.

Firs
t-t

o-C
hil

dre
n

Chil
dre

n-t
o-F

irs
t

Cart
esi

an
0

2

4

6

#
co

rr
ec

t
re

la
tio

ns
hi

ps

correct orientation
reverse orientation

Figure 2.5: Relationships extracted by the clustering algorithm using different
modes for relationship creation.

2.6.2 Dependency Trees Rules

Dependency Tree Rule Algorithm

We implemented two algorithms to generate sets of sentences for the dependency
tree rules. The basic algorithm scans every sentence in the text corpus, whereas
the sliding window algorithm considers only sentences with an attached coding.

19

To evaluate the effectiveness of these algorithms, we measured the accuracy of
each of these algorithms individually without clustering or code system relation-
ships. However, codes that were not intended to be used in the domain model
were deleted by the code filter. For these basic measurements, improvements to
the sliding window algorithm (besides look-ahead/look-behind parameters) were
disabled.

ba
sic

slid
ing

wind
ow

slid
ing

wind
ow

pa
ram

ete
riz

ed
0

2

4

6

#
co

rr
ec

t
re

la
tio

ns
hi

ps

Figure 2.6: Effectiveness of the dependency tree algorithms.

Figure 2.6 shows the effectiveness of the algorithm configurations. Using the
sliding window algorithm in its basic form yields a small benefit compared to
the basic algorithm. We tried various parameters for the look-ahead/look-behind
of the sliding window and found that parameterizing the sliding window with a
look-ahead of eight sentences and no look-behind further improved the number of
extracted correct relationships to a total of seven correctly identified sentences.

The sliding window algorithm contains two improvements: The code overlaying
the current window can be weighted stronger than others when finding codes
for relationships (current code boosting), and the current code can be used as a
substitute for codes participating in relationships. The effect of these options is
shown in Figure 2.7. We could not find evidence, that the code substitution aids
in finding additional relationships. Preferring the code that is attached to the
current sliding window however helped in finding two additional relationships (a
29 % improvement), although the orientation of these relationships was reversed.

In Figure 2.8, we experimented with various values for the current code boosts
and found a weight boost of 8 to produce the best results. Lower values were
not enough to surface all relationships, higher values did not produce any extra
relationships.

20

ba
sic

sub
sti

tut
ion

bo
ost

cod
e

sub
sti

tut
ion

+
bo

ost
0

2

4

6

8

#
co

rr
ec

t
re

la
tio

ns
hi

ps

correct orientation
reverse orientation

Figure 2.7: Effectiveness of improvements to the sliding window algorithm for
dependency trees.

0 1 2 3 5 8 13 21 34
0

2

4

6

8

weight boost

#
co

rr
ec

t
re

la
tio

ns
hi

ps

correct orientation
reverse orientation

Figure 2.8: Effectiveness of various values for the sliding window boost.

Entity-Code Matching

Relationships identified by the dependency tree rules tree rules need to be trans-
ferred to the code system. For this purpose, we implemented a entity-code lookup
table in our prototypical relationship extraction system.

To investigate possible improvements to the look-up process, we added techniques
such as stemming and deconstruction of compound nouns for the keys of the table.
The effectiveness of these methods is shown in Figure 2.9. Decompounding nouns
using the RHHR rule resulted in a 14 % lower accuracy. Stemming decreased the
accuracy of dependency tree relationships by 29 %, same as the combination of
stemming and decompounding.

We added two additional knowledge bases to improve our results. WordNet is

21

Basi
c

Ste
mming

RHHR-R
ule

Ste
mming

&
RHHR

0

2

4

6

#
co

rr
ec

t
re

la
tio

ns
hi

ps

Figure 2.9: Effectiveness of entity-code table lookup improvements.

used to rate the accuracy of entity-code pairings returned from the table. Web
search results can also be used in the same way. Additionally, we use the web
search to generate more entries for our entity-code table via usage of the doubly-
anchored pattern.

Figure 2.10 shows how these techniques influenced the results from the depen-
dency tree results. By rating the quality of found code-entity pairs using Word-
Net, the total number of found relationships stayed the same, however no incor-
rectly orientated relationships are found any more. Adding additional entities to
the entity-code table using a web search engine as knowledge base yielded no ad-
ditional results. We also found that using the web query technique for weighting
found pairs of code and entity decreased the number of correct results by 14 %.

2.6.3 Code System Relationships

Generating relationships from the code system alone was highly successful. Fig-
ure 2.11 shows the number of relationships generated by the code system analysis
and its improvements through WordNet application. Just by running relationship
extraction on the code system, we successfully identified 31 out of 46 directed
relationships (67 %).

Using WordNet to rate the quality of the code system relationships was unsuc-
cessful when we chose to only use strict hypernym/hyponym relationships in
WordNet. A small improvement of one additional relationship was found when
using the Shortest Ancestral Path algorithm on the WordNet database. We found
that combining both the Shortest Ancestral Path as well as the hypernym/hy-
ponym measure reduced the number of correctly identified relationships to 30.

22

Basi
c

Word
Net

Weig
hti

ng

Web
Sea

rch

Weig
hti

ng
DAP

Enti
ty

Find
er

0

2

4

6

#
co

rr
ec

t
re

la
tio

ns
hi

ps

correct orientation
reverse orientation

Figure 2.10: Effectiveness of adding additional knowledge bases to the entity-
code table.

2.6.4 All Methods Combined

Our prototypical relationship extraction system combines the three data sources
which we have evaluated in the previous sections. Figure 2.12 shows the result
of bundling relationships from these data sources. Combining all three methods,
the system identifies 16 relationships (15 correctly orientated, one reversed). Dis-
abling the code system relationships reduces the number of relationships by 53 %
to seven. Disabling only the clustering algorithm lead to a minimal decrease of
one relationship. However, disabling the relationships from the dependency tree
algorithm doubled the number of identified correct relationships up to 70 %.

2.7 Results Discussion

2.7.1 Results and Limitations

We were able to show that it is possible to extract a limited subset of relationships
between the codes by using NLP techniques. However, relying on relationships
encoded in the text alone proved not to be satisfactory.

Instead, we referred to additional data sources in the QDA project such as the
code system hierarchy. Our final results in subsection 2.6.4 show that the quality
of relationships generated from the dependency tree rules is poor; by disabling the
dependency tree rules, the code system relationships surfaced. This leads to the

23

Basi
c

W
ith

Word
Net

(H
yp

ern
ym

/H
yp

on
ym

)

W
ith

Word
Net

(Sh
ort

est
Ance

str
al

Path
)

W
ith

Word
Net

(H
yb

rid
)

29

30

31

32

#
co

rr
ec

t
re

la
tio

ns
hi

ps

correct orientation
reverse orientation

Figure 2.11: Number of relationships extracted purely from the code system
hierarchy (y-axis adjusted for readability).

conclusion that the dependency tree relationships are of lower quality compared
to the code system relationships.

Relying too strongly on relationships from the ocde systems contains the risk
of relying on implicit assumptions that were encoded by the creator of the code
system. Ideally, all relationships between codes should be visible straight from
the content of the text corpus.

Similar criticism may be applied to the application of WordNet and Internet
search engines. By using these data sources, we effectively incorporate knowledge
beyond the contents of the QDA project into our application. However, when
manually creating a domain model and during the coding process, the coders
themselves are subject to a similar bias. Therefore, the closed world assumption
is not feasible for the task at hand.

Regarding the creation of the domain model, we rely on a simple “boxes-and-
lines” approach, due to the difficulty of extracting any valid relationships at
all. It would be more appropriate to model the relationships with types and
descriptions similar to Unified Modeling Language (UML) class diagrams (UML,
2015).

24

All sou
rce

s

No Cod
e

Sy
ste

m
Ance

sto
rs

No Clus
ter

ing

No Dep
end

enc
y

Tree
Rule

s

0

10

20

30

#
co

rr
ec

t
re

la
tio

ns
hi

ps

correct orientation
reverse orientation

Figure 2.12: Results of combining all three sources of relationships in the QDA
project.

2.7.2 Further Work

We suggest that two main aspects need to be addressed to improve relationship
extraction from QDA projects:

1. A specialized coding guideline that makes QDA data more accessible to
NLP methods should to be developed.

2. Other data sources should be taken into consideration.

Regarding the first aspect, several points should be addressed in such a coding
guideline: For example, the codes in the code system that should be used in the
domain model should be labelled. Additionally, only codes that stand for concepts
and entities should be present in the code system. During the coding process, only
short text segments – ideally only subjects and objects of statements – should be
annotated with a code instead of whole paragraphs. This would greatly simplify
identification of codes belonging to a specific relationship that is mentioned in
the text.

Referring to the second aspect, additional data sources that could be used for
finding relationships include ontologies or additional text corpora such as the
Wikipedia. These data sources allow to simplify the task of matching entities to
codes, similar to the way we already used WordNet in our work. Using larger
knowledge bases would accurately reflect the existing knowledge a human coder
creating a domain model brings into the process.

25

2.8 Conclusion

We show that it is possible to extract relationships from the contents of a QDA
project. To do so, we identify three different data sources for relationships in
the QDA project: The text corpus, locality of codings, and the code system.
For text relationships we use a rule-based approach focused on dependency tree
parses. Coding locality is regarded as one-dimensional clustering problem. The
code system analysis is based on parent-child relationships in the code system
tree.

While the code system relationships are mostly accurate with an accuracy of 67 %,
relationships from the text corpus with 19 % accuracy and relationships from
locality of codings with 15 % accuracy are less reliable. Especially the transfer of
relationships from statements in the texts onto codes in the code system has been
difficult, although we incorporated additional knowledge bases such as WordNet
and web search into this step.

In conclusion, we identify two main areas for further research in this work: A
stricter coding guideline adapted to the use of NLP in QDA should be developed
and evaluated to improve the accuracy of found relationships, and additional
knowledge bases should be investigated in regards to the transfer of text rela-
tionships to code system relationships.

26

3 Elaboration Chapter

3.1 Finding Relationship Candidates

3.1.1 Sentence Parsing

Adoption of Dependency Trees for Other Languages

Dependency trees show the grammatical relations between words in a sentence.
These relations are stored in a tree data structure that links the words using the
appropriate grammatical role. The grammatical relations are named in accor-
dance to the Universal Dependencies standard. In our work, we use the depen-
dency tree to extract knowledge using a rule-based approach.

By using Universal Dependencies, these rules are applicable to texts in multiple
languages, as language-agnostic parsing is an aim of the Universal Dependencies
initiative (Nivre et al., 2016). However, applications of Universal Dependencies
have shown a tendency of lower accuracy in other languages such as German
(Vulic & Korhonen, 2016).

While our approach fared reasonably well on our corpus consisting mainly of
English research papers, QDA data sources often consists of spoken speech, for
example in interviews. In research, spoken language has been found to differ from
written language in regards to the Universal Dependencies annotations (Dobro-
voljc & Nivre, 2016).

In our work, we investigated the applicability of our dependency parsing approach
to other QDA data sets that were available to us. Of special interest was the data
set from Kunz (2015) that investigates the creation of domain models in the area
of human resources management.

We encountered several difficulties analyzing the sentences using Dependency
Tree parses. Consider the following sentence:

Interviewer: Also das Gehalt ist an die Jobcluster gebunden?

27

Frau —–: An die Kompetenzprofile… ganz stark gebunden in den meis-
ten Unternehmen. 1

This section of the interview links “Gehalt” (salary) and “Kompetenzprofil” (com-
petence profile) in the domain model. However, this is not immediately obvious
in spoken language:

• The question from the interviewer and the interviewee’s answer relate to
the same topic (salary), however there is no explicit reference in the inter-
viewee’s answer.

• The interviewee’s answer shows the use of ellipsis in natural language, which
we frequently encountered in interviews.

Especially the use of ellipsis, and the related changes of topics within one sentence
where problematic for dependency tree parses. Due to these problems, we decided
to apply our approach only to written language.

Coreference Resolution

In a natural language text, not all entities of a sentence are identified by their
name. Instead, in some cases, the subject or object of a statement are referred
to via pronouns. To use our dependency tree algorithm, we need to find repre-
sentative noun phrases for each pronoun, so that we can look up the codes that
may be referred to in the statement via our entity-code table. The process of
resolving pronouns in texts is called coreference resolution in NLP terminology.

The Stanford CoreNLP framework offers multiple distinct coreference systems,
ranging from a deterministic rule-based approach over a statistical system up to a
coreference system based on a neural net. The neural-network-based coreference
resolution system offers the highest accuracy, followed by the statistical system.
The deterministic resolution follows last in terms of accuracy.

Due to run-time considerations, we decided to use the statistical coreference res-
olution system as described by Clark and Manning (2015). It requires Stan-
ford CoreNLP’s dependency parse information, which is already contained in our
pipeline configuration to enable dependency tree rule information extraction.

Each occurrence of a reference to a specific entity in a text is called a mention of
the entity. All mentions of this entity are linked in a so called coreference chain.
When encountering an entity in a statement that is matched by a dependency
tree rule, we resolve the entity as follows:

1 Interviewer: So the salary is bound to a job cluster?
Mrs. —–: To the competence profile… strongly bound in most companies.

28

1. If the entity is a noun, it does not need to be resolved as we can feed it
directly to the entity-code table. Instead, we return the noun directly. This
is also the case for compound nouns where we return all words making up
the noun.

2. If the entity is the preposition “we”, it too is not resolved. The rationale
behind this rule is rooted in the fact that this preposition mostly stands
for the speaker or author of the paper and tends to confuse the Stanford
CoreNLP coreference system, so that it cannot be resolved correctly anyway.

3. Get the coreference chain for the preposition. If no coreference chain exists
(e.g. the coreference system was unable to find another mention for this
specific preposition), the algorithm fails.

4. Get the so called representative mention for the preposition. This is the
best mention, and it should ideally be a noun. Similar to point 1, this noun
is then expanded to include all its terms if it is a compound noun.

Resolution of compound nouns as mentioned above is necessary because the coref-
erence chain only points to one part of a compound noun, not the whole entity.
It is implemented using the dependency tree annotation compound. To resolve
a compound noun, we follow this annotations in a chain starting from the noun
identified by the coreference system.

3.1.2 Clustering Algorithm

Finding clusters of codings in a document breaks down to a one-dimensional
clustering problem. The position of the coding in the document is given by its
character offset. These positions can then be used as input to the clustering
algorithm.

The problem at hand differs from other clustering problems in computer science
which are often set in more than one dimension. Additionally, for these problems
the numbers of clusters to identify by the algorithm has to be known a priori.

Both of these aspects are not present in our case. We can exploit the fact that
coding offsets can be sorted, as they are simply a set of integers. However, we
need to be able to find an arbitrary number of clusters in the document.

To solve the task of clusters of codings we use the one-dimensional clustering al-
gorithm as shown in Algorithm 1. The algorithm is based on hierarchical descend
with a local criterion as termination condition.

It expects a sorted array of integers as input. The array is then divided into two
clusters. To do so, two pointers advance from the left and right border of the
array until they meet. The distance between an element and its successor is used

29

Algorithm 1 Finding an arbitrary number of clusters in one dimension.
Require: x is a list of positive integers, sorted in ascending order; left and right

are borders of the current array slice.

1: function Cluster(x, left, right)
2: n ← size(x)
3: clusters ← ∅
4: while left < right do
5: leftDist ← x[left + 1]− x[left]
6: rightDist ← x[right]− x[right− 1]
7: if leftDist < rightDist then
8: left ← left + 1
9: else

10: right ← right− 1
11: leftCluster ← x[0..left]
12: rightCluster ← x[right..n]
13: if ClusterDensity(leftCluster) ≤ 0.6 then
14: clusters ← clusters ∪Cluster(leftCluster)
15: else
16: clusters ← clusters ∪ leftCluster
17: if ClusterDensity(rightCluster) ≤ 0.6 then
18: clusters ← clusters ∪Cluster(rightCluster)
19: else
20: clusters ← clusters ∪ rightCluster
21: return clusters

22: function ClusterDensity(y)

23: return AvgDistBetween(y)
MaxDistBetween(y)

24: function AvgDistBetween(y)
25: sum ← 0
26: for i← 1 to size(y) do
27: sum ← sum + y[i]− y[i− 1]
28: return sum

size(y)

29: function MaxDistBetweeen(y)
30: k ← 0
31: for i← 1 to size(y) do
32: if k < y[i]− y[i− 1] then
33: k ← y[i]− y[i− 1]
34: return k

30

to decide whether the left or the right pointer should be advanced. The distance
is given by the difference between the values of the array.

After two clusters have been found, a density metric of each cluster is used to
decide whether the algorithm should be applied to the cluster. The density of
a cluster is calculated as the ratio of the average distance and the maximum
distance between values in the cluster. If the density is lower than a threshold,
the cluster is divided again by recursively applying the algorithm again. Else, it
is simply added to the set of clusters. For our work, a density threshold of 0.6
has yielded good results.

An example of clusters found by the algorithm is shown in Figure 3.1. Figure 3.1a
shows the grouping of the numbers 1, 2, 4, 10, 11, 12, 18, 19. For the human reader,
it is readily apparent that a total of three clusters forms a pleasing subdivision
of the set of numbers.

In Figure 3.1b, the first recursion step has been applied and the integers have been
divided into two sets: {1, 2, 3} form one cluster, whereas {10, 11, 12, 18, 19} form
the other. The latter cluster is too sparse according to the condition formulated
above.

Accordingly, the algorithm recurses a second time on the set {10, 11, 12, 18, 19}.
This time, the resulting sets are of unequal size: {10, 11, 12} form the left cluster,
{18, 19} form the right cluster. Both clusters fulfill the density condition and no
further recursion steps are necessary. Therefore, the algorithm returns the three
clusters {{1, 2, 3}, {10, 11, 12}, {18, 19}}.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
(a) Unclustered set of integers.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
(b) First recursion: One appropriate cluster has been found (red), the other cluster
must be divided again as it is not dense enough (blue).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
(c) Second recursion: A total of three clusters (red, blue, orange) have been found.

Figure 3.1: Sequence of the clustering steps performed on a set of eight integers
by recursively dividing.

31

With this algorithm, the local termination condition for the recursion leads to
the clusters not to be of equal size. However, this is not required for our task.

3.2 Matching Codes to Linguistic Entities

3.2.1 Look-Up Table Approach

Dependency trees describe relationships between two entities found in a sentence
and using the nouns from this sentence. To create a model containing only codes,
these relationships must be transferred to the code system. In our software, this is
done using a look-up table that contains multiple fitting codes for each linguistic
entity.

The look-up table is populated before running the dependency tree algorithm. To
do so, a scan over the text corpus is executed. For each sentence, noun phrases
and their coding annotations are extracted. These pairings of noun phrases and
codes are then added to the table. To store information about the likeliness that
a pairing of a noun phrase to a code is correct, a frequency counter is incremented
for each occurrence of the pairing in the texts. The structure of the look-up table
can be seen in Figure 3.2.

In its simplest form, look-up is performed using the strings of linguistic entities as
keys. To improve the extraction rate, lemmatization is performed on the linguistic
entity. That means that instead of matching “software development processes”,
the lemmatized form “software development process” is used as look-up term.
Thereby, plural forms, possessive terms and other inflections are removed and do
not hinder the look-up process.

Lemmatization of linguistic entities can be substituted by stemming. Stemming
removes word endings to reduce similar words to a common stem. This word
stem does not necessarily have to be an English word itself. Using this method,
similar words can be traced back to the same code in the look-up table. Consider
for example the words “developer”, “development”, and “developing”. Using
stemming, all of these words can be transformed into “develop”.

A special case is the treatment of compounds. Compound nouns provide a more
detailed description of a general concept. With the method described above,
matching codings for compound nouns can only be found if exactly the same
compound noun is already present as a key of the look-up table. Too fine-grained
compound nouns such as “software development process” do however not result
in a matching code if only a more general term such as “development process” is
available.

32

software development process

contribution

communication

Code Frequency
Software Development 8

Distributed Development 3
... ...

Code Frequency
Contributor 10

Contributor Agreement 5
... ...

Code Frequency
E-Mail 3

Figure 3.2: The entity–code look-up table: Entities can be substituted by
multiple codes. Each code has an attached weight.

For this purpose, an option to decompound nouns was implemented. Our ap-
proach follows the right-hand-head-rule as described by (Williams, 1981). The
rule states that the rightmost word of a compound is also its head, meaning the
word with the most general description. Additional specifying terms are added
on the left side.

Therefore, if no match is found for a complex compound noun w0, w1..wn, we
remove the leftmost term and try again to find a match using the term w1..wn.
This step is repeated until a match is found or only the head wn remains and the
result set is empty.

Application of the right-hand-head-rule, or lack thereof, can be combined with
both lemmatization and stemming, giving a total combination of four different
modes for matching entities to codes.

3.2.2 Weighting with WordNet

WordNet by (Fellbaum, 1998) is a database of English words. It contains in-
formation about meanings and relatedness of both nouns and verbs. WordNet

33

contains a variety of information regarding a word. For our work, the concepts
of synonyms and hypernyms are especially relevant.

A synonym of a word is another word with the same meaning. In WordNet,
synonyms for one concept are grouped into so called synsets. One synset contains
all words with the same meaning. As an example, the words {castle, palace,
manor, stately home} form a synset.

A hypernym is a more general term for a word, i.e. its superordinate. The subor-
dinate word (that has a more refined meaning) is called a hyponym. Therefore,
the relationship between a hypernym and its hyponym forms a “is a” relationship.
In WordNet, the hypernym/hyponym relationships form a tree. The root node
of this tree is the concept of an entity as the most abstract concept.

The hypernym of a word depends on the synset that is chosen for a word. For
example, the word castle has – besides others – the meaning of “a large and
stately mansion” as well as “a large building formerly occupied by a ruler and
fortified against attack”. The first meaning has the direct hypernym mansion,
further generalizing its meaning as a representative housing. The latter meaning
has the direct hypernym fortification.

Using the example word castle also shows that not only abstract concepts enter
into the dictionary of WordNet. The synset for castle in the meaning of “fortifi-
cation” also contains the Maginot Line, a concrete instance of a fortification.

For our thesis, we are interested in determining the relatedness of two words.
This information can then be used to adjust the matching of codes to linguistic
entities. Thus, the methods presented in the following sections aim to help us in
finding out whether two given nouns, originating from the linguistic entity and a
code from code system, fit together.

Strict Hypernym/Hyponym Relationship

The strict hypernym/hyponym relationship is a strong indicator that the words
used in the linguistic entity and the code that should be correlated are related.
Because the WordNet tree for nouns is built from hypernym/hyponym relation-
ships, we can use WordNet directly to identify hypernyms.

The hypernym/hyponym relationship does not have to be direct. Instead, we can
also find grandparents or even more distant parents for a given noun. Within the
WordNet tree, we find a path between the words in question. The length of this
path is then used as the distance between the words. This distance can then be
incorporated into the NLP pipeline to determine whether an entity and a code
fit together.

34

There are two special cases to consider. First, if two words are equal, the distance
between those two is zero. Second, if the two words are not in a hypernym/hy-
ponym relationship, we consider the distance to be infinite.

The fact that one noun can be found in different synsets that do have different
hyponyms makes identifying the correct hypernym of a noun difficult. We do not
have semantic information that could help us identify the exact synset for a given
noun. Therefore, we use a simple heuristic to mitigate this problem: Of all the
synsets for a given word, we calculate all possible hypernym distances. We then
select the smallest distance as result.

Shortest Ancestral Path

How can the relatedness of two terms be determined if they are not hyponym
and hypernym? As WordNet forms a tree, two nodes in the tree can always be
traced back to a common ancestor. In the worst case, this common ancestor is
the root of the WordNet tree.

To measure the relatedness of two terms t1, t2, we use the path distance between
t1 and t2 over a common ancestor a. An example for the application of the
shortest ancestral path algorithm to the words software and product is shown in
Figure 3.3.

Note that there are different synsets that can be used as a starting point of
navigating the WordNet tree to a common ancestor. For the word product, the
most suitable synsets appear to be “commodities offered for sale” or “an artifact
that has been created by someone or some process”. Depending on the context,
both these meanings can be applied to software. The definitions of product as
a term in the domain of mathematics or chemistry does not fit the context of
software development.

To deal with the various synsets, we take the minimal shortest ancestral path over
all possible ancestral paths of all synsets. This means that we do not differentiate
between different meanings of the synsets, but take an optimistic approach. In
some cases, such as the example in Figure 3.3, this approach leads to the algorithm
using the wrong synset. Here, the synset of product in the meaning of “result of
a process” is used as its shortest ancestral path is smaller than the one that uses
the meaning of good, merchandise that would be more fitting.

35

entity

abstraction, abstract entity

communication

written communication

writing

coding system

computer code

software

physical entity

process, physical process

phenomenon

consequence, effect, outcome

product

Figure 3.3: Shortest Ancestral Path algorithm in WordNet applied to the words
software and product. Arrows show a hypernym-to-hyponym relationships. The
total number of all edges (and therefore the shortest ancestral path) is 12.

3.2.3 Web Search Engines as Knowledge Bases

Introduction

As noted in the previous section, WordNet mixes concepts and instantiations.
It also in some cases produces results that do not match the expectations of a
domain expert. For example, the Shortest Ancestral Path between the words
software and product is 10, although in reality they are closely related.

Additionally, the resolution of synsets is difficult. It is often unclear, which synset
should be chosen for a specific word. Therefore, an additional knowledge base is
needed.

Prior work has been done on the topic of relationship extraction from the Internet
as information source. Kozareva et al. (2008) propose using a search engine
as data source for learning instances of classes of things. In their work, they
incrementally expand classes of concepts by using the search engine to find new
instances of the class.

To retrieve instances for a certain class, they use the class name and an initial seed
instance of the class. With these values, the so called doubly-anchored pattern
“<class_name> such as <class_instance> and *” is used to find new instances.

36

The use of the doubly-anchored pattern allows to differentiate between homonyms
that belong to different classes. (Kozareva et al., 2008) name the use of the word
Ford as an example. It can both stand for a president of the United States of
America and a car manufacturer. Using other methods to find related entities,
such as WordNet, makes it difficult to decide which meaning is suitable. By using
the class name in the query string, this problem is eliminated. For example,
applying the DAP to the class “car” using the instance “Ford” results in a list of
additional auto manufacturers.

Algorithm 2 Reckless Bootstrapping algorithm for the doubly-anchored pattern
(Kozareva, Riloff, & Hovy, 2008).

1: Members ← {Seed}
2: P0 ← “Class such as Seed and *”
3: P ← {P0}
4: iter ← 0
5: while iter < Max_Iters and P ̸= {} do
6: iter ← iter+1
7: for each Pi ∈ P do
8: Snippets ← web_query(Pi)
9: Candidates ← extract_words(Snippets, Pi)

10: Pnew ← {}
11: for each Candidatek ∈ Candidates do
12: if Candidate ̸∈ Members then
13: Members ← Members ∪ {Candidatek}
14: Pk ← “Class such as Candidatek and *”
15: Pnew ← Pnew ∪ {Pk}
16: P ← Pnew

The algorithm used to find new instances is shown in Algorithm 2. It iteratively
builds a set of members starting from the initial seed term. Two methods are
central to the algorithm. web_query() retrieves preview snippets from the
search engine. extract_words() then uses these preview snippets to find new
instances by matching the search pattern to the text of each snippet. Words that
are found in the place of the wild chard “*” are added as new class members. To
restrict the number of searches for each class, a maximum number of iterations
can be configured. A higher number means that more instances can be found,
however executing more searches also poses the risk of finding instances that do
not actually belong to the class.

37

Adaption

Differing from the original goal of the doubly-anchored pattern, the goal of our
application is not to build a catalog of semantic classes. However, one part of the
NLP pipeline is similar to such a catalog: The entity-code look-up table. There-
fore, we decided to use the doubly-anchored pattern during the initial population
phase of the table.

During this phase, noun entities that are annotated with a code are linked to this
code in the table. Multiple entities can link to the same code. Therefore, we use
the doubly-anchored pattern to find entities similar to those found in the text
corpus on the web. These entities are then added to the table as an instance for
the code they were found with.

The pattern need two parameters: A class name and an instance. In our case,
the code found by the coding annotation was used as class name. The entity that
was annotated with this code in the text corpus is used as seed instance.

Finding additional instances of the code was achieved by following the algorithm
named Reckless Bootstrapping by (Kozareva et al., 2008).

Due to the sheer amount of search request we would use to populate the entity
look-up table with the pattern, we decided to reduce the maximum iteration
number for the Reckless Bootstrapping algorithm to two. Nevertheless, roughly
7200 search requests were needed when analyzing the “Inner Source” data set.

Search Engine Access

The authors of the doubly-anchored pattern used the Google search engine as
data source. However, the time of this writing, the Google search API has been
discontinued and its successor, the Google Custom Search API is rate-limited in
a way that makes it unusable for our purpose.

We therefore resorted to using the Microsoft Cognitive Services Bing Search API
preview as data source. It can be queried via a simple REST interface. Default
values for the query have been chosen as visible in Table 3.1.

Parameter Value Description
mkt en-US Country settings
safesearch Off Restrict results by family-friendliness
q <query> The query string

Table 3.1: Query options used for the Bing API.

38

Search results could not be easily replicated by the search engine. This means,
that the number of results would change when the same query was executed
several times. This was the case even for queries that were handled in the short
timespan of five minutes.

3.3 The Code System

Some properties of the code system, such as using a code system meta model,
provide further indications for relationship extraction.

3.3.1 A Code System Meta Model

Information that can be gained from QDA projects relies on the way the coding
is performed and the code system is created. For example, generating hierarchy
information from the code system tree is only possible if the tree is well-formed
and the information represented in the tree structure is correct.

The “Inner Source” project that we used as data source for evaluating the meth-
ods investigated in this thesis is created using a meta model. This model was
developed by Salow (2016). This meta model aims at deriving both structural as
well as behavioral models from the same coding. To do so, every code is assigned
meta data in the form of a memo that is attached to it within the QDA software.

The memo is a text document that contains well-structured information. While
the memo also contains relationship information that was gained during the cod-
ing process by the human coder, we are interested in information about the entity
described by the code.

This information is encoded into two different axes. The Label describes the
structure of a code. The Aspect of a code encodes semantic information about
the role of the code. It may be either one of the following values: Object, Place,
Actor, Activity, or Process.

Relationships are then created according to a set of rules. However, not all rules
are strict. Instead, some optional rules are applied by the coder according to
their judgment. Therefore, automatic application of the rules to generate all
relationships is implausible. We can nevertheless use the information to enrich
our own data with relationship candidates.

We were especially interested in the semantic information encoded in the Label
property of the memos. For this purpose, we investigated the correlation between
the label type and the number of relationships in the “Inner Source” QDA project.

39

Aspects Relationship Count Cumulated
Aspect/Aspect 10

homogeneous: 24Process/Process 8
Object/Object 8
Object/Process 8

heterogeneous: 20
Process/Object 4
Actor/Process 4
Actor/Object 3
Object/Actor 1

Table 3.2: Undirected relationships and their correlation with the Label meta
data annotation of the used codes.

The domain model used for the analysis was not the model generated by our
algorithm, but the “gold standard” model provided by Salow (2016). The results
can be seen in Table 3.2.

Apparently, there exists a slight bias towards relationships between two codes of
the same Label type. However, a ratio of 24 homogeneous relationships to 20 het-
erogeneous relationships is not strong enough for us to deduce a rule that would
increase the weight of homogeneous relationship candidates in our algorithm. We
therefore decided not to follow up on this idea.

3.3.2 Code Naming Conventions

The codes in the code system encode concepts, entities and in some cases actions.
To enable automatic analysis of codes, they should be well-formed.

In the “Inner Source” project by (Salow, 2016), codes that should be used in the
domain model are enumerated. Thus, they can be identified by matching code
names to the pattern #<number> <actual code name> where <number> stands
for the number of the code, followed by the actual code word.

Code Enumeration

Prefixing codes with numbers or other meta-information poses a challenge for
automated analysis using NLP techniques. Arbitrary tokens in the code name
interfere with attempts to extract PoS information. Therefore, code names have
to be normalized by removing numeral prefixes and special characters used in
such phrases.

However, code numbers are not only a nuisance. On their positive side, they

40

allow identification of codes that should be used for the domain model. In the
case of the “Inner Source” project, codes that should be used for the domain
system are identifiable by their numeric prefix.

Codes encoding Actions

Instead of encoding concepts, some codes encode actions instead. This method
allows the coder to find evidence for behavior in the source material they are
using. In our research it became evident that such codes must not only be
removed, but can also used as a source of information themselves.

For the purpose of extracting a domain model automatically, these codes can not
be used. In the “Inner Source” project, one such code is find Stakeholders.
It describes the act of identifying all parties with claims in a software project.
However, being an action, it cannot be used as an entity in the domain model.
Instead, it can be used as a directed relationship between the actor that performs
the search and the code stakeholder.

To implement identification and removal of such codes, we implemented a sim-
ple mechanism based on and underlying pattern in the code name. We extract
PoS annotations of the code name (that has been cleaned as described in subsec-
tion 3.3.2). Codes which have a first PoS tag that identifies a verb are accepted
as code describing an action.

A drawback of this method is the difficulty of correctly assigning PoS tags. This
process is error-prone for codes consisting of compound nouns. As the code names
are very short fragments of text and not complete sentences, the PoS tagger
stumbles in some cases and assigns wrong tags to words. One such example
is the compound noun “Open Source Software”. As can be seen in Figure 3.4,
“Open” is interpreted as the verb “to open”.

Open

VB

Source

NNP

Software

NNP

Figure 3.4: The PoS tag of “Open” is erroneously identified as verb instead as
a part of the compound noun.

To deal with this problem, a blacklist of words that mislead the PoS tagger has
been included in our software. These words, such as “Open Source Software” are
accepted as valid noun phrases and action identification is suppressed.

Of course, this approach is highly domain specific and requires user intervention.
Further research in the area of code system information extraction should prob-

41

ably resort to more robust methods such as using a dictionary to identify valid
nouns.

3.3.3 Impulses for Future Research Work

Our work was highly experimental, as we undertook to our knowledge the first
attempt to create relationship models from QDA data. While we evaluated basic
approaches to the problem, we identified two main areas of work that would
benefit from further inquiry.

Adaption of Machine Learning

In accordance with the recent trend towards machine learning, learning ap-
proaches are brought into relationship extraction. Neural networks have been
applied to relationship extraction (Zheng et al., 2016), yielding good results.
Similarly, Nguyen, Matsuo, and Ishizuka (2007) use a Support Vector Machine
(SVM) to extract relationships from the Wikipedia corpus. While these papers
are – as with our approach – based on Dependency trees, they do not use rules to
extract the relationships. Instead, the dependency trees are, in reduced form, fed
into the learning algorithm. Airola et al. (2008) propose a kernel-based approach
for this task.

Unfortunately, due to the restricted data set available for our work, we could
not experiment with adapting machine learning-based relationships extraction to
QDA. For this to work, a larger data set that allows the separation in training
and evaluation data would have been necessary.

We hope that with the ongoing work on QDA within the QDAcity project2, such
a data set will become available.

To facilitate the development of machine learning-aided approaches to relation-
ship extraction, we propose a strict coding guideline. It should adhere to the
following principles:

1. Codings should be applied to small text segments. This allows automated
approaches to identify the exact statement that is referred to by the coding.
Unfortunately, this was not always possible in our data set, where some
codings covered a span of half a page of text.

2. The code system should ideally contain only codes relevant for the domain
model. In our prototype, we had to include a function to remove unwanted
codes.

2See qdacity.com.

42

qdacity.com

Code Matching Problem

One major problem we encountered in our work was the matching of entities in
the texts, that were referred to by the dependency tree rules, to codes in the code
system. We tried to mitigate the problem by relying on co-occurence of nouns
and codes in our corpus and WordNet as additional knowledge base.

For further research in this are, we propose adding additional knowledge bases.
Such knowledge bases may include the Wikipedia or ready-made ontologies. This
additional information can then be used to find more matching codes and nouns
accurately.

This suggestion may be criticized for not relying only on the QDA project data
for finding relations. Ideally, one might argue, a closed-world assumption should
be valid for the task of relationship extraction. However, as we have found high
accuracy of relationships generated based on the coding system. The coding
system itself is created by the coder. As the coder brings a-priori knowledge
into the creation of the coding system as well as in the final creation step of
the domain model, we believe that this closed-world assumption is not valid for
traditional, human-based approaches.

43

Appendix A Overview over the Software Arti-
fact

A.1 General Information

The prototypical implementation of the relationship extraction system we devel-
oped in the course of this thesis is written in Java.

The program expects a single command line parameter (-config), which points
to a configuration file. To facilitate experimentation with parameter values, a
helper program was created that creates permutations of .properties files based
on a job description. It is provided on GitHub3.

A.2 Architecture

The program is structured around a central workflow that determines the se-
quence of the program starting at input file reading over various NLP methods
up to the output file generation. These methods have all been moved to their own
sub-packages within the algorithm package: These are packages codesystem,
codingcluster, coreferences, dependencytrees, entitycodematching, model,
webquery, wordnet, and workflow.

The system employs dependency injection using Google Guice as supporting li-
brary. This pattern helps to to bootstrap the application from a single entry
point and to make implementations interchangeable. The latter aspect proved to
be especially useful, as it allowed us to exchange modules by adjusting the central
Guice binding definition. Runtime parameters are also injected via dependency
injection by parsing the configuration file in the Guice module definition and
injecting the parameters as @Named() constructor parameters into the objects
where they are needed.

A.3 Scripts

A set of scripts is provided in the directory scripts/. Four bash shell scripts
provide easy deployment to a remote server and enable remote debugging using
a SSH tunnel.

Two Python scripts aid in the evaluation of the software. run_batch.py expects
a directory as parameter and starts the program for each configuration file found.

3https://github.com/m-hofmann/properties-permutator

45

https://github.com/m-hofmann/properties-permutator

Appendix A: Overview over the Software Artifact

read_resultfile.py parses and sorts result files according to their accuracy.

A.4 Parameters

In the course of this thesis, we evaluated many approaches to relationship ex-
traction from QDA data. All these approaches have been built into the software
prototype, and have been made configurable to test them against each other. The
list of configuration parameters with their data type and explanation is shown in
Table 3.3.

46

Table 3.3: Parameters in the configuration file of the prototypical relationship extraction system.

Parameter Datatype Comment
cacheDirectory String Path to cache directory.
buildDocumentCache Boolean Specify whether documents should be parsed by

CoreNLP or the if the cache should be used.
buildEntityCodeTableCache Boolean Specify whether the entity-code table should be

rebuilt or loaded from cache.
idealGraphFile String Path to file containing gold-standard graph rep-

resentation for evaluation.
stemLinguisticEntites Boolean Whether stemming should be used for entity-

code table lookup.
rhhrSplitting Boolean Whether noun decompounding should be used for

entity-code table lookup.
useDAPEntityFinder Boolean Whether the doubly-anchored pattern should be

used to build the entity-code table.
strictNounOnlyRelationship Boolean Whether only dependencies where subject and

object are strict noun phrases should be accepted.
clusterRelationshipType Enum One of: DIRECTED, UNDIRECTED
clusterRelationshipMode Enum One of: NONE, FIRST_TO_CHILDREN,

CHILDREN_TO_FIRST, CARTESIAN
clusterRelationshipWeight Integer Weight of relationships created from clusters.

Continued on next page

47

A
ppendix

A
:O

verview
over

the
Software

A
rtifact

Table 3.3 – continued from previous page
Parameter Datatype Comment

clusterOnlySlides Boolean Whether the clustering algorithm should only be
applied to slides.

undirectedSelfLoops Boolean Whether self loops should be allowed in the undi-
rected part of the graph.

dependencyAlgorithm Enum One of: nop, basic, slidingWindow
dependencyRules Enum List One or more of:

NSUBJ_DOBJ, NSUBJ_NOBJ,
NSUBJ_DOBJ_LINKED_VERBS, CCOMP,
ADVERBIAL_ROOT, NMOD_NSUBJPASS,
NSUBJ_NMOD

slideWindowSentencesBefore Integer Look-behind of the sliding window algorithm.
slideWindowSentencesAfter Integer Look-ahead of the sliding window algorithm.
slideWindowBoostCurrentCoding Boolean Whether codes within the current window should

be weighted higher.
slideWindowBoostValue Integer Additional weight for codes in the sliding win-

dow.
slideWindowSubstituteCode Boolean Whether the slide window code should be used

for entity-code matching.
useWordnetRelatednessForDirected Boolean Whether WordNet should be used in entity-code

matching of directed relationships.
Continued on next page

48

Table 3.3 – continued from previous page
Parameter Datatype Comment

useWordnetRelatednessForUndirected Boolean Whether WordNet should be used in entity-code
matching for undirected relationships.

wordNetRelatednessPower Integer Power-of-n boost for entity-code matchings found
in WordNet.

useWebSearchRelatednessForDirected Boolean Whether web search should be used in entity-
code matching of directed relationships.

useWebSearchRelatednessForUndirected Boolean Whether web search should be used in entity-
code matching of undirected relationships.

webSearchRelatednessPower Integer Power-of-n boost for entity-code matchings found
with web search.

useEntityCodeTableQuantiles Boolean Whether quantile-based filtering should be used
for entity-code table results.

entityCodeTableQuantileThreshold Integer Threshold for entity-code table results.
codeSystemAncestorsEnabled Boolean Whether the code system hierarchy should be

used to generate relationships.
codeSystemAncestorsWeight Integer Weight used for relationships generated from

code system hierarchy.
codeSystemAncestorsUseWordNet Boolean Whether WordNet should be used to influence

the weight of code system ancestor relationships.
Continued on next page

49

A
ppendix

A
:O

verview
over

the
Software

A
rtifact

Table 3.3 – continued from previous page
Parameter Datatype Comment

codeSystemAncestorsWordNetMode Enum One of: SHORTEST_ANCESTRAL_PATH,
HYPERNYM_HYPONYM, HYPER-
NYM_OR_SAP

codewordFilterRegex String Regular expression for code name-based filtering.
ignoreSelfLoops Boolean Whether self loops should be ignored when cre-

ating the graph result from the model.
plotEdgeSumDistribution Boolean Option to output edge weights distribution for

development.
avoidOppositeEdges Boolean Whether edges opposite to each other should be

merged.
ratioCodeSystemDirectedEdges Float Ratio of edges from the code system (assumed

high validity) vs other relationship sources.
codeSystemEdgeWeighting Enum One of: SINGULAR, TOTAL_SUM

50

Appendix B Bill of Materials

Table 3.4: Dependencies of the prototype implemented in the course of this
thesis.

GroupId ArtifactId Version License
com.beust jcommander 1.69 Apache 2.0
com.google.code.gson gson 2.8.0 Apache 2.0
com.google.guave guava 21.0 Apache 2.0
com.google.inject guice 4.1.0 Apache 2.0
com.google.inject.extensions guice-

assistedinject
4.1.0 Apache 2.0

com.google.inject.extensions guice-
multibindings

4.1.0 Apache 2.0

commons-io commons-io 2.5 Apache 2.0
de.ruedigermoeller fst 2.48 Apache 2.0
edu.stanford.nlp stanford-corenlp 3.7.0 GNU GPL v3
io.dropwizard.metrics metrics-core 3.2.2 Apache 2.0
junit junit 4.12 Eclipse Pub-

lic License 1.0
net.sf.extjwnl extjwnl 1.9.2 BSD
net.sf.extjwnl extjwnl-data-

wn31
1.2 BSD

org.apache.logging.log4j log4j-api 2.7 Apache 2.0
org.apache.logging.log4j log4j-core 2.7 Apache 2.0
org.apache.tika tika-parsers 1.7 Apache 2.0
org.freemarker freemarker 2.3.25-

incubating
Apache 2.0

org.glassfish.jersey.core jersey-client 2.25.1 CDDL+GPL
org.glassfish.jersey.media jersey-media-

jaxb
2.25.1 CDDL+GPL

org.mockito mockito-core 2.6.3 MIT
org.xerial sqlite-jdbc 3.14.2.1 Apache 2.0

Continued on next page

51

Appendix 3.2: Bill of Materials

Table 3.4 – continued from previous page
GroupId ArtifactId Version License

org.zalando.phrs jersey-media-
json-gson

0.1 Apache 2.0

52

Glossary

coreference resolution The process of identifying all mentions of the same
entity in a text, regardless whether they are referred to explicitly or by
pronouns. 28

GraphVIZ Software package for graph layout and drawing. 18

MaxQDA Software to support Qualitative Data Analysis. 2, 4, 7

Stanford CoreNLP Java framework that implements various NLP algorithms.
4, 7, 10, 28, 29

53

Acronyms

ER entity-relationship. 3

NLP Natural Language Processing. 2, 3, 4, 5, 6, 7, 15, 23, 25, 26, 28, 34, 37,
40, 53

PoS part of speech. 7, 11, 40, 41

QDA Qualitative Data Analysis. vii, 2, 4, 5, 6, 18, 23, 24, 22, 24, 25, 26, 27, 39,
42, 43, 46

SVM Support Vector Machine. 42

UML Unified Modeling Language. 24

54

References

Airola, A., Pyysalo, S., Björne, J., Pahikkala, T., Ginter, F., & Salakoski, T.
(2008). A graph kernel for protein-protein interaction extraction. In Pro-
ceedings of the workshop on current trends in biomedical natural language
processing (pp. 1–9). Association for Computational Linguistics.

Ambriola, V. & Gervasi, V. (1997). Processing natural language requirements. In
Automated software engineering, 1997. Proceedings., 12th IEEE Interna-
tional Conference (pp. 36–45). IEEE.

Black, W. J. (1987). Acquisition of conceptual data models from natural language
descriptions. In Proceedings of the third conference on european chapter of
the Association for Computational Linguistics (pp. 241–248). Association
for Computational Linguistics.

Clark, K. & Manning, C. D. [Christopher D.]. (2015). Entity-centric coreference
resolution with model stacking. In Association for Computational Linguis-
tics (ACL).

Dobrovoljc, K. & Nivre, J. (2016). The universal dependencies treebank of spoken
slovenian. In Proceedings of the ninth international conference on language
resources and evaluation (LREC’16) (pp. 1566–73).

Du, S. & Metzler, D. P. (2006). An automated multi-component approach to ex-
tracting entity relationships from database requirement specification doc-
uments. In International conference on application of natural language to
information systems (pp. 1–11). Springer.

Fellbaum, C. (1998). WordNet. Wiley Online Library.
Gansner, E. R. & North, S. C. (2000). An open graph visualization system and

its applications to software engineering. SOFTWARE - PRACTICE AND
EXPERIENCE, 30(11), 1203–1233.

Garten, Y. & Altman, R. B. (2009). Pharmspresso: a text mining tool for extrac-
tion of pharmacogenomic concepts and relationships from full text. BMC
bioinformatics, 10(2), S6.

Kozareva, Z., Riloff, E., & Hovy, E. H. (2008). Semantic class learning from the
web with hyponym pattern linkage graphs. In ACL (Vol. 8, pp. 1048–1056).

Kunz, K. (2015). Developing a domain analysis procedure based on grounded
theory method (Master’s thesis, FAU Erlangen-Nuernberg).

55

REFERENCES

Marcus, M. P., Marcinkiewicz, M. A., & Santorini, B. (1993). Building a large
annotated corpus of English: the Penn Treebank. Computational linguistics,
19(2), 313–330.

Nguyen, D. P., Matsuo, Y., & Ishizuka, M. (2007). Relation extraction from
Wikipedia using subtree mining. In Proceedings of the national conference
on artificial intelligence (Vol. 22, 2, p. 1414). Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999.

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajic, J., Manning, C. D.
[Christopher D], …, Silveira, N., et al. (2016). Universal dependencies v1:
a multilingual treebank collection. In Proceedings of the 10th international
conference on language resources and evaluation (LREC 2016) (pp. 1659–
1666).

Omar, N., Hanna, J., & McKevitt, P. (2004). Heuristic-based entity-relationship
modelling through natural language processing. In Artificial intelligence
and cognitive science conference (aics) (pp. 302–313). Artificial Intelligence
Association of Ireland (AIAI).

Microsoft Cognitive Services – Bing Web Search API. (n.d.). Retrieved April 10,
2017, from https://www.microsoft.com/cognitive- services/en-us/bing-
web-search-api

Quan, C., Wang, M., & Ren, F. (2014). An unsupervised text mining method for
relation extraction from biomedical literature. PloS one, 9(7), e102039.

Robeer, M., Lucassen, G., van der Werf, J. M. E., Dalpiaz, F., & Brinkkemper,
S. (2016). Automated extraction of conceptual models from user stories
via nlp. In Requirements engineering conference (RE), 2016 IEEE 24th
international (pp. 196–205). IEEE.

Roberts, A., Gaizauskas, R., & Hepple, M. (2008). Extracting clinical relation-
ships from patient narratives. In Proceedings of the workshop on current
trends in biomedical natural language processing (pp. 10–18). Association
for Computational Linguistics.

Salow, S. (2016). A metamodel for code systems (Master’s thesis, Friedrich-
Alexander-Universität Erlangen-Nürnberg).

Schuster, S. & Manning, C. D. [Christopher D]. (2016). Enhanced English uni-
versal dependencies: An improved representation for natural language un-
derstanding tasks. In Proceedings of the tenth international conference on
language resources and evaluation (lrec 2016).

Silveira, N., Dozat, T., de Marneffe, M.-C., Bowman, S., Connor, M., Bauer, J.,
& Manning, C. D. (2014). A gold standard dependency corpus for English.
In Proceedings of the ninth international conference on language resources
and evaluation (LREC 2014).

UML, O. (2015). Unified modeling languagetm (uml®) version 2.5.
Vulic, I. & Korhonen, A. (2016). Is “universal syntax” universally useful for learn-

ing distributed word representations? In The 54th annual meeting of the
association for computational linguistics (p. 518).

56

https://www.microsoft.com/cognitive-services/en-us/bing-web-search-api
https://www.microsoft.com/cognitive-services/en-us/bing-web-search-api

Williams, E. (1981). On the notions “Lexically Related” and “Head of a Word”.
Linguistic Inquiry, 12(2), 245–274.

Withington, J. (2011). PDF Explained. O’Reilly Media, Inc.
Zheng, S., Xu, J., Bao, H., Qi, Z., Zhang, J., Hao, H., & Xu, B. (2016). Joint

learning of entity semantics and relation pattern for relation extraction. In
Joint european conference on machine learning and knowledge discovery in
databases (pp. 443–458). Springer.

57

	Introduction
	Original Thesis Goals
	Changes to Thesis Goals

	Research Chapter
	Introduction
	Related Work
	Relationship Extraction in Software Engineering
	Relationship Extraction in Medicine
	Conclusion

	Research Question
	Research Approach
	Introduction
	Data Model
	Input
	Relationship Extraction Techniques
	Inference of Relations in the Code System
	Code System Clean-Up
	Output

	Used Data Sources
	Research Results
	Clustering Algorithm
	Dependency Trees Rules
	Code System Relationships
	All Methods Combined

	Results Discussion
	Results and Limitations
	Further Work

	Conclusion

	Elaboration Chapter
	Finding Relationship Candidates
	Sentence Parsing
	Clustering Algorithm

	Matching Codes to Linguistic Entities
	Look-Up Table Approach
	Weighting with WordNet
	Web Search Engines as Knowledge Bases

	The Code System
	A Code System Meta Model
	Code Naming Conventions
	Impulses for Future Research Work

	Appendices
	Appendix Overview over the Software Artifact
	General Information
	Architecture
	Scripts
	Parameters

	Appendix Bill of Materials

	Glossary
	Acronyms
	References

