
1

Friedrich-Alexander-Universität Erlangen-Nürnberg

Technische Fakultät, Department Informatik

Sindy Salow

A Metamodel for Code Systems

Submitted on 05.10.2016

Supervisor: Prof. Dr. Dirk Riehle; Andreas Kaufmann, M. Sc.

Professur für Open-Source-Software

Department Informatik, Technische Fakultät

Friedrich-Alexander University Erlangen-Nürnberg

2

Versicherung

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der
angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form
noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.

Sindy Salow

Frankfurt am Main, 05.10.2016

License

This work is licensed under the Creative Commons Attribution 4.0 International license
(CC BY 4.0), see https://creativecommons.org/licenses/by/4.0/

Sindy Salow

Frankfurt am Main, 05.10.2016

3

Abstract

Requirements elicitation is an important factor in software engineering. Mainly the information
needed is elicited through interviews and other qualitative sources. The analysis that follows is
often an ad-hoc process that relies on expertise of the analyst(s) and therefore is hardly replica-
ble. Additionally, the process is not transparent as the resulting modeling elements cannot be
mapped to the initial data. First attempts to solve this issues by adapting the clearly defined
steps of Qualitative Data Analysis (QDA) suggest that the approach should be followed up. In
order to further formalize the process this thesis suggests a metamodel which allows to derive
structure and behavior models from the same coding process. The metamodel is derived by
analyzing an existing metamodel and by comparing different existing coding systems and their
resulting modeling artifacts. The metamodel is extended with a rule system and tested on an
exemplary data set. For validation the resulting models are compared to models from an ad-hoc
modeling process and evaluated by experts. Results show that utilizing QDA with a code system
metamodel allows for an increase in transparency and makes it more easy to vary detail levels
of the derived models.

Keywords: Domain Model, Domain Analysis, Requirements Engineering, Qualitative Data
Analysis (QDA)

4

Content

Content ... 4

List of Figures .. 6

List of Tables .. 7

List of Abbreviations .. 8

1 Introduction .. 9

1.1 Original Thesis Goals .. 9

1.2 Changes to Thesis Goals .. 9

2 Research Chapter .. 10

2.1 Introduction ... 10

2.2 Related Work ... 11

2.3 Research Question ... 13

2.4 Research Approach .. 13

2.4.1 Adaption of metamodel .. 14

2.4.2 Rules development and test .. 14

2.4.3 Validation ... 14

2.5 Used Data Sources ... 15

2.5.1 Metamodel .. 15

2.5.2 Qualitative data input ... 15

2.5.3 Code systems .. 16

2.5.4 Models .. 16

2.6 Research Results .. 16

2.6.1 Metamodel .. 17

2.6.2 Rules ... 20

2.6.2.1 Application rules ... 20

2.6.2.2 Mapping rules ... 21

2.6.3 Procedure .. 22

2.6.4 Validation ... 23

2.7 Results Discussion ... 23

2.8 Conclusion ... 24

3 Elaboration Chapter .. 25

3.1 Theoretical Background .. 25

3.1.1 Requirements engineering .. 25

3.1.1.1 Requirements .. 25

3.1.1.2 Activities of requirements engineering ... 25

3.1.2 Domain model .. 26

3.1.3 Qualitative data analysis ... 26

5

3.1.3.1 Grounded theory method .. 27

3.1.4 Metamodels and ontologies .. 28

3.2 Insights on Approach and Procedure ... 29

3.2.1 Scope and detail level ... 29

3.2.2 Word choice in coding .. 29

3.2.3 Handling of different data sources ... 30

3.2.4 Mapping rules and modeling .. 30

3.3 Suggestions for Features and Tool Support ... 31

3.4 Further Research .. 32

3.5 Expected Benefits .. 32

Appendices ... 33

Appendix A: Interview Structure ... 33

Appendix B: Domain Model Inner Source (Ad-hoc) ... 34

Appendix C: Domain Model Inner Source (Metamodel-based) .. 35

Appendix D: Behavioral Models Inner Source .. 36

Appendix E: Mapping Rules .. 37

References .. 42

6

List of Figures

Figure 1: "Code System Meta Model" by Kunz (2015) ... 15
Figure 2: Metamodel .. 19

7

List of Tables

Table 1: Terms .. 17
Table 2: Definitions of the metamodel elements .. 18
Table 3: Application rules... 20
Table 4: Examples for codes with metamodel information .. 21
Table 5: Mapping rules (extract) .. 21

8

List of Abbreviations

CAQDAS Computer assisted Qualitative Data Analysis Software
HR Human Resources
QDA Qualitative Data Analysis
UML Unified Modeling Language

9

1 Introduction

1.1 Original Thesis Goals
Requirements are elicited through interviews and other qualitative sources. The analysis that
follows is often an ad-hoc process that relies on expertise of the analyst(s) and therefore is
hardly replicable. Additionally, the process is not transparent as the resulting modeling elements
cannot be mapped to the initial data. First attempts to solve this issues by adapting the clearly
defined steps of Qualitative Data Analysis (QDA) suggest that the approach should be followed
up.
In order to further formalize the process this thesis suggests a metamodel which allows to derive
structural and behavioral models from the same coding process. The metamodel is derived by
analyzing an existing metamodel and by comparing different existing coding constructs and
their resulting modeling artifacts. The metamodel is used on an exemplary data set and the
resulting models are compared to models from an ad-hoc modeling process. Expert feedback is
used to further validate the models.

1.2 Changes to Thesis Goals
The goals of this thesis were not changed.

10

2 Research Chapter

2.1 Introduction
By utilizing Qualitative Data Analysis (QDA) in combination with a code system metamodel it
is possible to create consistent and complete models for requirements engineering in a more
structured, detailed and transparent manner.

Requirements engineering starts with elicitation of the necessary information usually in form
of qualitative data. Completeness of this information, the quality of the processing and trans-
formation into abstract representations have a high impact on the requirement specifications
and therefore on the project success. Evaluations by the Standish Group (2004) show that poor
requirements specifications are the leading cause for the high failure rate of software projects.
Problems and errors discovered in late phases of projects cause much higher costs than those
discovered early during requirements elicitation and analysis (Moody, 2005). Regardless, in-
complete and inconsistent requirements are still identified as a major problem in projects (Fer-
nandez & Wagner, 2013). This is caused by a gap between domain experts who provide the
information, and system analysts who process it. A system analyst, evaluating the relevant in-
formation, has no means to prove the information is complete (Chakraborty & Dehlinger, 2009)
and additionally faces ambiguous terms as a challenge during process and domain analysis
(Flowers & Edeki, 2013).

A positive effect on the specification of business requirements can be created through process
models that allow a consistent and detailed understanding of a domain (Cardoso, Almeida &
Guizzardi, 2009). Process models include activities and their causal and temporal relationships,
as well as specific business rules (Van der Aalst, Ter Hofstede & Weske, 2003). For modeling
and engineering complex systems it is necessary to take their ecosystem into account (Rausch,
Bartelt, Herold, Klus, & Niebuhr, 2013) which means to also present structural elements. A
domain model combines these demands as it identifies business- and application-specific entity
types and relationships (Broy, 2013). Domain models can be represented through different
known models from software engineering. In using appropriate behavioral and structural mod-
els companies can leverage further advantages. Structural models support various stages of the
software development process, depicting the structure or state of a system (Seidl, Scholz, Hue-
mer & Kappel, 2015). Process models foster process optimization (De Oca, Snoeck, Reijers &
Rodríguez-Morffi, 2014) and enable companies to improve their projects as well as overall
competitiveness (Geambasu, 2012).

Despite this knowledge, effective and comprehensible methods for the modeling processes are
missing (Becker, 2011). More comprehensive de Oca et al. (2014) recently stated that the elic-
itation, modeling and validation of processes still needs to be addressed by research. Several
researchers take into account that software engineering is a highly social activity (Coleman &
O’Connor, 2007) and as a result use qualitative methods from the social science to describe,
explore or understand their respective information system topic. Qualitative methods emphasize
personal experiences and interpretation. They are more concerned with understanding the
meaning of social phenomena and focus on links among a larger number of attributes across
relatively few cases. (Coleman & O’Connor 2007). For these reasons we further analyze qual-
itative research methods concerning their suitability for requirements engineering.

Qualitative research methods include grounded theory, which uses a combination of data anal-
ysis and data collection. The analytical steps are constant comparison and theoretical sampling
which means that data elements are examined and compared and if gaps are identified new data
is sampled. Constant comparison as well as other qualitative analysis techniques rely on “cod-
ing” the data. Labels (codes) are generated while studying the data in order to identify and
describe concepts and features. This is known as open coding (Charmaz, 1996; Corbin &

11

Strauss, 1990). Further steps would be axial and selective coding – an advancement of catego-
ries and identification of core categories followed by memo writing where upcoming ideas and
connections are noted (Charmaz, 1996; Corbin & Strauss, 1990). To develop an explanatory
framework, comparative analysis is used (Starks & Trinidad, 2007).

This work describes how to approach and transform qualitative data for requirements engineer-
ing, giving guidelines how to use the different coding steps and methods in combination with a
metamodel. The metamodel, as well as the guidelines for the process, make it possible to neu-
tralize subjectivity of the analyst.

We base our work on a previously suggested metamodel by Kunz (2015) taking into account
several insights from explorative work by Schmitt (2015, 2016), Milisterfer (2016) and Salow
(2016). The metamodel classifies the codes in order to structure the transmission into structural
and behavioral models. This work extends the previous work by testing the metamodel with
various datasets and in this process verify and define the elements of the metamodel. Procedural
steps of the QDA are tracked, so that we can suggest a thorough method for coding and trans-
forming qualitative data into several models needed for requirements specification. It is high-
lighted in which manner transparency and replicability are improved and which adaptions were
made to the steps of the QDA.

Our contribution is to show that one metamodel for code systems can encompass information
needed to create structural and behavioral models and that these models have advancements
over ad-hoc models.

In the context of this work the term “code system” describes
 the set of codes and codings (assigned text) themselves,
 the structure (hierarchy of the codes),
 the memos and, where applicable, the color scheme

belonging to one data set and produced through QDA.

To develop this metamodel, we considered various work on QDA which we present in chapter
2.2. The research questions, approach and included data sources are explained independently in
the following chapters. The final metamodel, the associated rule system and insights on the
procedural steps of the QDA are presented as results in chapter 2.6. Subsequently, chapter 2.7
discusses these results highlighting that the QDA and metamodel based procedure gives the
analyst/modeler the chance to produce consistent models, always connect the model elements
to the original input and easily increase detail levels when needed. Implications and limitations,
suggestions for further research and a short conclusion complete our work.

2.2 Related Work
Even though QDA is used in management studies since the 1970’s to analyze natural language
and communication patterns (Locke, 2001) its application in requirements engineering is not
covered comprehensively by the existing body of research. However, papers by Binder and
Edwards (2010), Carvalho, Scott and Jeffery (2005) and Chakraborty and Dehlinger (2009),
commonly suggest that there are benefits in using QDA for process modeling and requirements
engineering. Findings include the possibility to formalize the modeling process and make it less
dependent on the domain knowledge and expertise of the analyst. More specific studies found
that by applying concepts from grounded theory approaches, the models are built more system-
atically (Fernandez & Wagner, 2013), traceability increases (Chakraborty & Dehlinger, 2009;
Kaufmann & Riehle, 2015) and especially contextual requirements are more easily identified
(Fernandez & Lehmann, 2011; Flowers & Edeki, 2013).

Studies focusing on grounded theory as one of the qualitative research methods include the
work by Chakraborty and Dehlinger (2009). They name enterprises a large social system whose

12

processes often lack objective and traceable analysis. In their work they used grounded theory
including the systematic procedure of the paradigm model by Strauss and Corbin (1990) to
better align enterprise architecture with systems architecture and found that the transition be-
tween both is facilitated by the approach. In the conclusion they point out that further research
should include investigations on how grounded theory method can support modeling and iden-
tify gaps in requirements engineering.

Binder and Edwards (2010), as well as Fernandez and Lehman (2011), further support the con-
clusion that grounded theory is an eligible method to study the connections between humans
and objects in a business environment including the interactions with information and commu-
nication technologies and to acquire knowledge about the underlying processes. Small adjust-
ments to acknowledge the research domain and goal, however, seem sensible. This work shows
further reasoning concerning the alteration of process steps from grounded theory. Among oth-
ers the study from Fernandez and Lehman (2011) is taken into account. It implies to preserve
the principles of grounded theory but to use different abstraction levels and therefore extend the
process of analysis. A modification we did not consider due to high risks of bias is the alteration
of the first step of coding by introducing key template categories. It was suggested by Binder
and Edwards (2010) along with more applicable guidelines how to execute the different coding
steps in order to arrive at a qualitative theory and consequently show how the grounded theory
method is applicable to identify business strategies.

One comprehensive work by Chakraborty, Rosenkranz and Dehlinger (2015) not only linked
grounded theory to information systems and process optimization but also to requirements en-
gineering. They developed a systematic and traceable procedure for non-functional require-
ments. The Grounded and Linguistic-Based Requirements Analysis Procedure (GLAP) was de-
signed to support sensemaking in requirements engineering. Grounded theory method was in-
cluded in this procedure to ensure a systematic procedure as well as traceability and the ability
to operationalize. We build on their proposition that grounded theory is able to bridge the gap
between qualitative data input and formal output. This is supported by a study of Panayiotou,
Gayialis, Evangelopoulos and Katimertzoglou (2015) which showed that a structured require-
ments engineering framework can improve requirements engineering and the transition into the
final system.

Still the quality of the resulting models needs to be assessed. Our results of the QDA-based
approach will be compared to an ad-hoc model as Carvalho et al. (2005) found important dif-
ferences between an ad-hoc model of an experienced analyst and one created with the help of
constant comparison. Among other things they differed concerning data coverage and sensible
representation of hierarchies. Similarly, Milisterfer (2016) compared a domain model created
ad-hoc with a previously by Kunz (2015) created domain model based on QDA and findings
suggested that the grounded theory based methodology by Kunz identified additional concepts
and more structural relations. The methodology of Kunz (2015) introduced a metamodel for the
structuring of the coded data before the transformation. This concept cannot be found in other
studies although a metamodel allows more structure and standardization in the transformation
process and standardization concerning modeling approaches is critical area of business process
modeling (Indulska, Recker, Rosemann & Green, 2009). Relating to process models, metamod-
els are used to define parameters of UML models (OMG, 2005) or to evaluate them regarding
certain qualities (List & Korherr, 2006).

We see the metamodel by Kunz (2015) as a good foundation for a structured and integrated
approach especially as it is suitable for structural and behavioral models. This is of importance
to work on requirements because a holistic view on processes needs to be supplemented by
other views to represent all the real-world constructs required (e.g. Green & Rosemann, 2000).

13

2.3 Research Question
1. Can one metamodel for code systems encompass information needed to create structural

and behavioral models?

The first research question asks if

 the elements of the metamodel are all used,
 are sensible connected within one model
 and if the structuring and coding of qualitative data based on the metamodel allow the

creation of structural and behavioral models.

2. Do the models created with the metamodel have advancements in terms of consistency,
completeness, transparency and replicability compared to ad-hoc models?

For the second questions the following characteristics will be examined:

 Consistency: There is no contradiction between the parts/elements of one model and
among the different derived models.

 Completeness: All facts and ideas represented in the input data are represented in the
models.

 Transparency: The connection between input data and resulting model can be traced in
every phase.

 Replicability: The resulting model would not vary if another person or the same per-
son at another time repeats the modeling process.

2.4 Research Approach
The overarching approach is leaned on principles of action research where the attempt to solve
an existing problem is accompanied by studying the experience of solving the problem (Da-
vison, Martinsons & Kock, 2004). We applied action research as an iterative approach where
new information occurring through the process is integrated into the theory (Easterbrook,
Singer, Storey & Damian, 2008). Therefore, we conducted several analysis and test steps to
adapt and extend the metamodel. Furthermore, we reflected on the explorative process of ana-
lyzing and utilizing the metamodel and adjusted our method accordingly. The different steps
are explained in the following sub-chapters. All details on the used data sources are separately
described in chapter 2.5.

The metamodel is developed to allow a transfer of data gained from QDA into structural and
behavioral models and to provide orientation during the QDA in itself. Prompted by previous
work (see chapter 2.2) we adopted mostly methods from the grounded theory, like open and
axial coding. The single process steps are explained as part of the resulting procedure in chapter
2.6.3.

The processing of the data was executed with MaxQDA, a Computer assisted Qualitative Data
Analysis Software (CAQDAS). Information concerning the codes can be inserted in the code
memos, but no features for code metadata or to place additional structured information are
currently available. To ensure transparency during analysis we chose to execute parts of the
labeling in Microsoft Excel. For the graphical representation of domain models we use UML
class models for the structural part and UML activity diagrams for the behavioral part.
Therefore, entities identified during the coding process are, for example, represented as class in
the class model and as object node in the activity diagram (Daoust, 2012).

14

2.4.1 Adaption of metamodel

First the metamodel and research work by Kunz (2015) was examined in regard to integrity and
applicability to structural and behavioral models. We analyzed the labels from the code memos
as well as the code structure in combination with the class model Kunz (2015) created to rep-
resent the domain. Additionally, we explored if it was possible to create an activity diagram
based on Kunz (2015) code system. To do so we added additional labels to the memos conform
to the initial metamodel. Two activity diagrams from Salow (2016) extracted from the same
data were used to compare complexity and coverage.

Based on the insights from this analysis the metamodel structure and relationship elements were
changed. The codes and labels from Kunz were then re-examined in order to ensure that the
changes did not hinder or eliminate transitions from code system to models that was possible
before.

2.4.2 Rules development and test

The now existing second version of the metamodel was evaluated by applying it to a code sys-
tem developed by Salow (2016). The code system was developed without a metamodel but on
the same data set as used by Kunz (2015). The parallelism in data made it possible to compare
the code and label structure as well as the resulting models. During the process of adding labels
to the code system by Salow (2016) further adaptions of the metamodel were conducted and a
rule system for applying the labels was implemented. These iterative changes and additions
were resolutions of occurring problems which are described in detail in chapter 2.6. This pro-
cess of labeling, analyzing, modeling and correcting was then repeated with two more data sets
from other domains to ensure general validity of the findings. Domains covered up to this point
were Human Resources (HR) (data from Kunz, 2015; Salow, 2016), Qualitative Research in
Social Sciences (data from Schmitt, 2016) and the European Train Control System (data from
Schmitt, 2015).

2.4.3 Validation

In the previous steps we relied on existing code systems. In order to investigate if the metamodel
has a positive effect on the coding steps we now underwent the whole process of domain anal-
ysis. The coding steps including the labeling according to the metamodel are described in detail
in chapter 2.6.3. Afterwards we used the code structure and labels from the memos to create a
class model and two exemplary activity diagrams of different detail level, noting if the trans-
formation process changed in comparison to the previous examples. Action research like this is
often criticized as being ad-hoc and subjective (Easterbrook et al., 2008) and in this case sub-
jectivity was increased as all steps were conducted by the same person. Therefore, external
input was necessary to create intersubjectivity.

To collect direct feedback on the domain model we conducted two structured expert interviews
with members of the Open Source Research Group. They were chosen based on their research
focus and interviewed independently to increase reliability (Dorussen, Lenz & Blavoukos,
2005). According to McGraw (1989) as well as Agarwal and Tanniru (1990) structured inter-
views have advantages concerning the extraction of specific, domain oriented information. We
therefore structured the interviews with item statements on perceived semantic quality and user
information satisfaction from Poels, Maes, Gailly & Paemeleire (2005). With this we gather
insights on how the information conveyed by the model and the domain that is modeled corre-
spond and how the user perceives the information presented (Poels et al., 2005). The underlying
quality properties seemed appropriate as they align with other quality measures. For example,
with a framework for evaluating UML Schemas by Cherfi, Akoka & Comyn-Wattiau (2002),
quality criteria named by Schuette & Rotthowe (1998) and error categories of models identified
by Leung & Bolloju (2005).

15

Both experts evaluated the structural model from the QDA-based procedure as well as one ad-
hoc model (structural domain model) for comparison without knowing the source of the models
to minimize bias. The ad-hoc model was created by an IT Consultant with familiarity but no
extensive former knowledge on Inner Source. He was presented the same data which was used
for the coding process but was free to choose which sources were relevant for him.

All models and the interview structure are presented in the appendix.

2.5 Used Data Sources
We used input from four different domains and two fields, social and technical, to ensure that
our metamodel supports all kinds of requirements elicitation processes. The specific works were
chosen as they already had a sensible data basis, an existing code system from QDA and parts
of domain models for comparison. In the following we explain the data basis and the output of
previous work as it builds the foundation for and influenced our analysis process. We also
adopted some procedures and methods, which we describe in detail in chapter 2.6.3.

2.5.1 Metamodel

Kunz (2015) adapted grounded theory for its utilization in requirements engineering and de-
rived a systematic procedure for domain analysis including a metamodel (Figure 1). The meta-
model set the basis for the coding procedure of the QDA and for deriving a domain model
including structural and dynamic aspects. Coding in alignment with the metamodel ensured that
one code always only encompasses one aspect and is phrased accordingly, e.g. verbs for activ-
ities. The relationship type affects from the metamodel included the three specifications: per-
forms, is directed at and influences. We adopted the metamodel at the beginning of our analysis
with the alteration that affects was exchanged for its subgroups for better overview.

Figure 1: "Code System Meta Model" by Kunz (2015)

2.5.2 Qualitative data input

For the analysis of the first four code systems (Kunz, 2015; Salow, 2016; Schmitt, 2015; Schmitt
2016) we needed to access the initial data input for clarification of context.

Basis for the code system of Kunz (2015) and Salow (2016) are six semi-structured interviews
on HR development with four domain experts. The interviews were conducted by Kunz who

16

used additional literature to clarify HR specific terms before transferring the code system into
a domain model.

The data on the openETCS was elicitated through interviews as well. After an informal intro-
duction to the project Schmitt (2015) interviewed four team members of the openETCS devel-
opment team.

For his work on qualitative research Schmitt (2016) carried out five interviews. In addition to
insights on QDA, specifications for the QDAcity project were created. Interview partners were
four professional researchers from social sciences, who were considered stakeholders in the
QDAcity project and the lead developer of QDAcity.

The data set on Inner Source consists mainly of journal and conference papers as well as various
publications from companies. One expert interview on Inner Source implementation published
as part of a book, two other supporting book chapters and university research complemented
the input. University work encompassed six interviews on the implementation of Inner Source
at Siemens, excerpts from dissertations and teaching slide decks.

2.5.3 Code systems

The code system developed by Kunz (2015) already is aligned with the metamodel. All infor-
mation needed for a glossary and for the development of a structural domain model is noted
down in the code memos. Not all codes have memos and some memos need complementation
to fit the behavioral part of the metamodel.

The code system by Salow (2016) was initially developed without a metamodel, but on the
same data set as used by Kunz (2015). Previously, the code hierarchy and a basic color scheme
were used to derive activity diagrams from the code system, but no labels or other indicators
exist.

Schmitt (2015, 2016) used the memos in their original purpose for the recording of thoughts,
further questions, ideas and gaps. Additionally, he added a XML structure in some code memos
which contain a glossary text, attributes and relations. Whilst the openETCS project (Schmitt,
2015) was object-orientated, the QDAcity/Social Sciences project (Schmitt, 2016) also in-
cluded transitions of activities as a behavioral component.

2.5.4 Models

We consulted the “complete domain model” by Kunz (2015) and the activity diagrams by Salow
(2016) for reference during the analysis and for comparison with the models build during the
analysis of the associated code systems (on HR development).

Similarly, the “Domain Model of the RE tool chain of openETCS” (Schmitt, 2015) and the
“Domain Model of the Social Science Domain” (Schmitt, 2016) were used for reference.

2.6 Research Results
This chapter first explains how we arrived at the final metamodel and the corresponding rule-
system. We extended the metamodel with two sets of rules, application rules and mapping rules,
which both influenced the procedure of the QDA and the subsequent transfer of the codes into
a domain model. The description of the procedure explains the single QDA steps as well as the
process of labeling and modeling.

At the beginning of our analysis the need for clearly distinguishable terms became immediately
apparent as there were several overlaps and uncertainties (e.g. code, label). Table 1 lists the
vocabulary essential to comprehend the results including the umbrella terms to distinguish the
different metamodel elements.

17

Term Explanation

Code A code is the name assigned to a phenomenon from the original data input.
A code can be assigned to several sections of the original data where the
phenomenon is represented.

Coding A coding is one section of the original data input assigned with a code.

labeling;
to label

Labeling or to label in this work means to add meta-information to a code
(by writing it in the memo). This needs to be done in alignment with the
metamodel. (Note: Label is an independent noun/term in this work.)

Element An element refers to one specific part of the metamodel. All elements are
listed in table 2. The three types of elements are Label, Aspect and Rela-
tionship.

Label Stands for the elements of the metamodel that are assigned to the
code/aspect first (Concept, Category, Property)

 Every code has to be assigned one Label
 One code can get only one Label
 Label is used as a flag in memos e.g. Label = Category

Aspect Stands for the elements of the metamodel that differentiate the aspect types
(Activity, Process, Object, Place, Actor)

 Comprises structural and dynamic aspects
 One code can get only one Aspect
 Aspect is used as a flag in memos e.g. Aspect = Object

Relationship Stands for the label that defines dynamic and structural relationships
 The code concerned is always the starting point/origin and therefore

does not need to be named e.g. is a: employee in the code memo
from manager means “manager is an employee”

 Every relationship element is its own flag in memos
e.g. is a: employee

Table 1: Terms

Definition of the particular elements of the metamodel are presented in table 2. In the same
manner as the other artifacts those definitions were refined throughout the process. For exam-
ple, Event and is directed at became obsolete during the analysis and were removed. The defi-
nitions of Process and influences were altered accordingly.

2.6.1 Metamodel

The essential part to label an Aspect through a Concept, or its specialization - a Category, was
already introduced by Kunz (2015) and posed no problem during any analysis step. However,
Property represents a very different kind of Aspect and therefore was shifted in the metamodel
to emphasize this. Property is used to give very detailed information, when only a high-level
view is needed Aspects labeled with Property can be left out.

While analyzing the metamodel elements used by Kunz (2015) we realized that the element
State was not used once. According to Kunz (2015) it should be used to label something that
influences a Concept like, for example, a market situation but we could not find codes to apply
this element and therefore eliminated it from the metamodel.

The element Event was used and at first seemed a very reasonable choice to describe Aspects
that represented a structural object and at the same time had a dynamic component. One exam-
ple was “Project evaluation”; several Activities contributed to it, but in the end it was an ob-
ject/class with certain attributes.

18

 Element Definition
L

ab
el

Category A Category comprises at least one important Concept. It describes a

phenomenon, idea, process or entity essential to the domain.

Concept A Concept is a complex phenomenon, idea or attribute dependent on a
category or another Concept.

Property A Property is something that contributes to a Concept or Category
without being such itself.

A
sp

ec
t

Object An Aspect, that is a thing/object or a software that can be used (not
acts automated/on its own), or the representation of an
idea/phenomenon.

Place An Aspect, that describes a locality – specific or unspecific (e.g. a
video conference room, room 302).

Actor An Aspect, that is a person, a department, a company or an automated
agent (e.g. HR, ethic commission, some Trigger).

Event An Aspect, that is a clearly delimited event which is described as one
entity (can be reoccurring).

Activity Smallest dynamic entity as defined preliminary to the analysis
(depending on the decision upon the level of detail).

Process Consists of at least one Activity. An Aspect, that is a clearly delimited
event which is described as one entity (can be reoccurring) (e.g.
Training).

R
el

at
io

n
sh

ip

is a If one Aspect extends another Aspect (inherits from it). Connects two
Aspects of the same type. Properties (Attributes/Methods) are
inherited.

is part of Strong connection; Aspects cannot exist without each other.

is related to Shows a relation between two Aspects. Can be used to map a structural
Property to a Concept/Category.

is consequence of Names predecessor of an Activity.

Causes Names successor of an Activity.

Performs Describes which activities are carried out by an Actor. Always has the
form: Actor performs Activity/Process.

is directed at Activity or Process changes an Object, Place or Actor.

Influences Activity or Process interacts with/changes another Aspect. Can be used
to map a dynamic Property to a Concept/Category.

Table 2: Definitions of the metamodel elements

However, as we tried to use it to derive activity diagrams and later when trying to apply it to
the code structure by Salow (2016) several discrepancies showed. For example, “Feedback”
was labeled as Category-Event by Kunz and as such could not be an activity in an activity
diagram. The repetitive structure was also not represented adequately. If activities are assigned
to an Event and given a certain order it needs to be assumed that this order is always kept or it
would not be sensible to represent it in a behavioral model. The term Event suggests a onetime
occurrence. We therefore decided to eliminate the element Event and instead use Process. Pro-
cesses can be broken down in sub-processes (Process X is part of Process Y) until they reach
the smallest entity – an Activity. This allocation was easy to apply to the following code struc-
tures and Event as element was not missed. Especially for the code wordings chosen by Schmitt

19

(2015, 2016) e.g. “mapping from requirements into GitHub items”, “examination of research
area” Process was a fitting choice and Event would not have been appropriate.

In order to establish a sequence for Process and Activity we maintained causes and is conse-
quence of. This concept is highly useful for the behavioral models. In all code systems these
two Relationships could not be applied thoroughly because highly detailed information on sin-
gle process steps needs to be available and could not be added to the data samples in the scope
of this work. Salow (2016) and Schmitt (2016) focused on behavioral aspects in their code
system and therefore more processes and activities could be identified and put in sequence.
However, it became apparent that exact wording and adding the sequence directly whilst coding
would improve the behavioral models. During the coding of the Inner Source data this was
considered but proofed difficult due to the data basis. Most clear sequences could be discovered
in the interviews.

As mentioned previously affects was split into its subgroups performs, is directed at and influ-
ences in the beginning. As State was eliminated as element from the very beginning the appli-
cation scenarios suggested by Kunz (2015) for these terms were changed. At first we used in-
fluences to connect Activity/Process with another dynamic Aspect and is directed at for con-
necting Activity/Process with another structural Aspect. This was hard to apply because in order
to choose the right Relationship one had to consider both involved codes instead of starting
from the current code and knowing which Relationships could be applied. During modeling the
HR domain model based on the code system of Salow (2016) and its labels we realized that is
directed at added no insights or helped the modeling process in any way. It was therefore elim-
inated and the scenarios for performs and influences became more clear. We also checked back-
wards if the substitution of affects through its subgroups and the elimination had negative im-
pact on the previous code systems/models and found none. Examples for the application are
“Scrum master performs Grooming sessions” and “change data influences employee data”.

The two structural Relationships is a and is part of were straight forward in their application
and only the rules, how to combine them with Category/Concept/Property were adapted. This
will be explained in the following chapter.

Figure 2: Metamodel

20

As is visible in figure 2 the final metamodel also includes the attribute “Association name” for
is related to and performs. Both are transferred into associations in structural models (see
mapping rules) and were already equipped with association names by Kunz (2015). First, during
analyzing the code system by Salow (2016), we only adapted the application method of stating
the association names in brackets (Kunz, 2015) where plausible. However, both code systems
by Schmitt (2015, 2016) consistently assigned association names which made it much easier to
make sense of the connections. As analysts should keep in mind that other stakeholders need
this additional insight “Association name” was integrated into the metamodel.

2.6.2 Rules

2.6.2.1 Application rules

The application rules should ensure that the codes are combined in a sensible way. The coder
should consider them during the coding/memo-writing process of the QDA. If tool support was
available, the software should ensure only the given combinations are used and all mandatory
fields are filled immediately.

The rules root from the Label-elements first and then from the Aspect-elements. If the conse-
quence is no strict rule it is not named e.g. Label = Concept: is related to-Relationship is op-
tional. During “Rules development and test” the rules were changed several times to take
changes made to the metamodel (e.g. eliminate is directed at) into account.

Other rules needed some evolution to simplify the process of labeling. For example, we intro-
duced warnings for wrong Label-Aspect combinations (Aspect cannot be Activity), missing se-
quence for Activity/Process and missing assignment of is a/is part of for Concept.

After we came across values for properties several times (e.g. Concept “Feedback” had the
Property “Type” and the values could be “one to one” or “360 degrees”) we decided to allow
is a for Properties in order to flag that this code is a characteristic of this already named Prop-
erty. Is a was chosen because values of an attribute are a specialization of this attribute in the
same way classes can be a specialization of other classes (“one to one Feedback” is a “Feedback
type”).

During the analysis these rules were transferred into an Excel table, to simplify their application
and the subsequent mapping. Table 4 is an exemplary section of such a table color coded to
show the transfer to the mapping rules.

Condition Consequence

Label = = (Category OR Concept) Aspect cannot be Activity

Label = = (Category OR Property) no is part of allowed

Label = = Concept at least one of (is a, is part of)

Aspect = = (Activity OR Process) at least one of (is consequence of, causes)

Aspect = = (Object OR Actor OR Place) no is consequence allowed
 no causes allowed
 no influences allowed

Aspect = = Actor mandatory performs

Aspect ≠ Actor no performs allowed

Label = = Property
AND Aspect = = (Object OR Actor OR Place)

 mandatory is related to

Label = = Property
AND Aspect = = (Activity OR Process)

 mandatory influences
 no is related to allowed

Table 3: Application rules

21

Table 4: Examples for codes with metamodel information

2.6.2.2 Mapping rules

The mapping rules were roughly outlined as we modeled the structural and behavioral model
for the HR development domain and refined as soon as the application rules were finalized.
One important improvement adapted from Schmitt (2015, 2016) was to use the flags “START”
in is consequence of and “END” in causes to create a mapping condition for process start and
end points.

We applied the mapping rules to create the Inner Source domain model, but had to prioritize
and exclude some codes to obtain an uncluttered domain model. Prioritizing and gaps in se-
quences were the main obstacles in creating the models. Similar to the application rules, the
mapping rules would be easier to use/apply if integrated in a CAQDAS or a tool for UML
modeling.

Metamodel information of the code Structural domain model

IF Label = = (Category OR Concept) CREATE class
{classname = “code”}

IF Label = = (Category OR Concept)
AND is a IS NOT EMPTY

CREATE generalization
{origin WHERE classname = = “code”;
target WHERE classname = = “is a”}

IF Label = = (Category OR Concept)
AND is part of IS NOT EMPTY

CREATE aggregation
{origin WHERE classname = = “code”;
target WHERE classname = = “is part of”}

IF Label = = (Category OR Concept)
AND is related to IS NOT EMPTY

FOR EACH {CREATE association
{origin WHERE classname = = “code”;
target WHERE classname = = “is related to”;
IF “(name)” EXISTS IN is related to
{associationname = “name”}}}

IF Label = = Property
AND Aspect = = (Object OR Actor OR Place)
AND is related to IS NOT EMPTY

CREATE attribute
{target WHERE classname = = “is related to”;
propertyname = “code”}

IF Label = = Property
AND is a IS NOT EMPTY

CREATE value FOR attribute
{target WHERE classname = = “is a”;
valuename = “code”}

Table 5: Mapping rules (extract)

Code Label Aspect
Relationship

is a is part of is related to
Distributed De-
velopment

Category Object

Open Source Category Object
Distributed De-
velopment

Volunteering (de-
pends on)

Volunteering Category Object
Recruiting; Incentive
system

OSS develop-
ment practices

Concept Object Open Source

OS license Property Object Open Source

GPL Property Object OS license

22

Table 5 shows an extract from the mapping rules for structural domain models corresponding
to the entries in table 4. This overview gives an impression of how the information belonging
to the codes could be structured in a CAQDAS and which rules would be needed to
automatically map the information into a model. The complete set of mapping rules is presented
in appendix E.

2.6.3 Procedure

We consider all activities, performed to arrive at a sufficient set of models to describe the do-
main, part of the procedure. The first step therefore is to clarify what a sufficient result of the
QDA is. QDA serves the description, interpretation and understanding of behavior. We suggest
that in a practical case the stakeholders need to agree which behavior the analyst should focus
on and which detail level needs to be provided in the domain model. Ideally this is revised after
the first iterations of the analysis. As such specification was not given, and time constraints for
the analysis existed, we chose a low detail level for the Inner Source domain.

The specific process steps of the QDA we suggest are adapted from the grounded theory
method. This systematic set of procedures was initially developed by Glaser and Strauss (1967),
and since then adapted and adopted by various researchers. Commonly agreed is that data is
iteratively collected, coded and processed and that each iteration gives indications on how to
proceed (e.g. Corbin & Strauss, 1990). Although we could not conduct an iterative data collec-
tion we recommend to do so. Choosing new data sources to complement one’s information
(theoretical sampling) is crucial to ensure a complete domain model (theoretical saturation).

Besides the iterative data elicitation, coding and memo writing are the key concepts of the
grounded theory method. We adopted the following steps from Kunz (2015), Salow (2016) and
Schmitt (2015, 2016) because they had a high overlap, aligned with the theoretical basis of the
grounded theory method (e.g. Corbin & Strauss, 1990) and none of the authors stated problems
with using them for the development of domain models. To support the application of the met-
amodel and its rules some additional considerations need to be taken into account:

Open coding: Every idea or phenomenon corresponding with the particular domain is
assigned a code. The analyst should ensure that a code only comprises one idea/phenom-
enon.

Axial coding: The previously assigned codes are ordered and grouped. Following the
coding paradigm by Corbin and Strauss (1990) the analyst should focus on representing
the metamodel relationships in the code hierarchy. Where possible association names
should already be added to the memos.

Selective coding: Main categories of the domain should be identified and labeled as such.
All concepts should be connected to these main categories or need to be re-examined if
they actually contribute to the domain. Superfluous concepts or codes without connection
to the main categories can be moved outside the code structure used for modeling.

Memo writing: Memos comprise notes of the analyst and due to lack of alternatives the
labels of the metamodel. We named all metamodel elements in the memo and added labels
to them where fitting. This structure can be varied depending on the subsequent modeling
process (e.g. XML-structure by Schmitt (2015, 2016)). The analyst should ensure that all
application rules are fulfilled while adding the labels.

After assigning ID’s the complete code system can be transferred into models as needed. If a
process is to complex or a structural model to cluttered to be helpful the code hierarchy can be
used to partition processes in sub-processes or respectively to create packages and display the
details in separate models.

23

2.6.4 Validation

We tested our metamodel elements and the rule system by applying it to a data collection on
Inner Source. We used all elements from the metamodel except Place and we could apply the
rule sets without encountering problems.

The resulting behavioral models only showed separate processes but the “Category-Processes”
of the domain (e.g. Inner Source Implementation) could not be represented. Firstly, this was a
data problem. We could not confirm unclear process steps or fill gaps (no theoretical sampling)
and the research papers in our data set did not explain single process steps and their sequence.
Secondly, it is a problem of the domain. Open Source and Inner Source processes are described
as agile, parallel and distributed, shaped by self-selection, individual decisions, asynchronous
and remote communication and tailored to the organization.

The structural model was evaluated by two experts with one ad-hoc model as reference. Differ-
ent quality criteria were ranked on a Likert scale but the results were inconclusive. Although,
between both experts the two models were ranked nearly identical the qualitative assessment
highlighted some differences. Inconsistencies and gaps in the ad-hoc model were a given fact
but missing elements in our model could be found in the code system and could have easily
been added (e.g. “challenges of Open Source”). Another difference between the models was in
the focus. The ad-hoc model focuses on technical aspects including elements highlighted as
important by expert 2 like software components and tools. This led us to the assumption that
the coding steps should be performed by different stakeholders to mitigate bias.

Overall the experts agreed that our model presented the domain mostly correctly, only few ele-
ments must be added and no contradictions were present. They stated that the model had ad-
vancements over a textual description and would help explain the domain to others.

2.7 Results Discussion
We developed a metamodel and in our validation showed that all elements are applicable and
can be combined in a sensible way. A structural and a behavioral model could be derived which
affirms our first research question.

When it comes to the advancements proposed in the second research question a more differen-
tiated answer emerges. It is easily answered only for transparency which is better than in ad-
hoc models as the connection to the original input is guaranteed via ID’s.

The experts did not identify contradictions and therefore we can also state that the structural
domain model derived with our method is consistent. However, the same is true for the opposed
ad-hoc model. We assume that not all ad-hoc models show the same level of consistency as the
presence of unexpected features and similar quality issues is a frequent problem (Leung &
Bolloju, 2005). For a definite answer more comparisons between results of both methods are
needed.

Completeness of our structured domain model did not surpass the ad-hoc model, due to two
limitations. On the one hand the detail level of the models was not agreed upon before modeling
as there was no actual business goal. Some of the missing details were present in the code
system and could have been added. On the other hand, we worked with a given data set and
could not fill gaps through further theoretical sampling. We suggest a case study that provides
a practical task as well as access to data and stakeholders for interviews. The completeness of
metamodel-based domain models should be re-evaluated and ways to extract fitting detail levels
for different target groups need to identified.

In order to evaluate replicability people with different background and experience need to per-
form the procedure and the output needs to be evaluated. Our validation could not include this
evaluation as only one person coded the data set. Other problems, for example, the increased

24

effort and mistakes owed to manual transfers could be mitigated if the process was supported
by appropriate software tools/CAQDAS features.

2.8 Conclusion
This thesis developed a metamodel which allows to derive structure and behavior models from
one code system. Through iterative analysis steps the metamodel could be extended with two
rule sets and suggestions for a fitting coding procedure. Validation showed that the resulting
domain model was consistent and easily traceable to its original dataset. To leverage more ad-
vantages of the metamodel and the QDA process it is directed at, it will be necessary to conduct
the previously suggested research, e.g. practical case studies. At least as important would be a
sensible tool support for the application of the metamodel and for the transfer into different
structural and behavioral models. We are convinced that further efforts like these will increase
the applicability of the metamodel and contribute to its efficient use in requirements elicitation.

25

3 Elaboration Chapter

The research chapter on “A metamodel for code system” focused on providing the necessary
information to understand our motivation, analysis and the resulting metamodel artifacts. Nev-
ertheless, we would like to provide additional background information for various areas. The
first sub-chapters can be used to get a more comprehensive understanding on which theoretical
foundation we base our work. This comprises summaries on requirements engineering, domain
models, QDA as well as metamodels and ontologies.

After that we will focus on practical considerations. By elaborating on our insights on the ap-
proach and the resulting procedure we explain which obstacles and problems still need to be
overcome. One part of these problems can be mitigated by introducing new features or tool
support for the method which we suggest in chapter 3.3. Others need to be addressed by further
research as pointed out in chapter 3.4. Finally, we want to motivate both, new implementations
and accompanying re-evaluations as well as further research by proposing expected benefits.

3.1 Theoretical Background
3.1.1 Requirements engineering

3.1.1.1 Requirements

The term “requirements” is used for a variety of information. Wiegers and Beatty (2013) com-
piled a list including user and system requirements, business rules, constraints, features, quality
attributes and the common differentiation between functional and non-functional requirements.
The variance of requirements originates in the variance of stakeholders most systems have
(Wiegers & Beatty, 2013).

Across literature the differentiation between functional and non-functional requirements is most
common and it is a challenge to integrate both perspectives when observing and modeling com-
plex information systems (Doerr, 2013). Functional requirements describe the behavior of the
system - what the system should do – in various situations. The definition becomes less distinct
for non-functional requirements. Cost, performance, maintainability and robustness are exam-
ples named by Chung, Nixon, Yu and Mylopoulos (2012). More general non-functional re-
quirements are characteristics and properties (Wiegers & Beatty, 2013) and can contain quali-
tative and quantitative criteria. Although they can be subjective and relative to the system con-
sidered, non-functional requirements are used as selection criteria for, the often vast amount, of
software/functionality available (Chung, Nixon, Yu and Mylopoulos, 2012). Doerr (2013) sup-
ports this view. Before the right software solution can be selected, requirements need to be
defined on the right detail level.

3.1.1.2 Activities of requirements engineering

The first step of developing requirements or requirements engineering is requirements elicita-
tion. To discover or elicitate requirements is not easy (Laplante, 2013) and often methods from
the social sciences like interviews and methods are facilitated (Macaulay, 2012). One example
for the complexity of the elicitation process is the research by Browne and Rogish (2001) where
a specific method to foster the information flow from the user to the analyst is developed. Re-
quirements elicitation is about understanding the problem, whereas the later activities are about
providing a solution to the identified problem (Robertson & Robertson, 2012).

However, before the requirements can be formed to a solution and modeled, analysis and rec-
onciliation is necessary (Laplante, 2013). Statements from users and other stakeholders are not
always logical and need to be adjusted. Formal methods applied during requirements elicitation
can help to attain a more logical structure from the beginning. Additional improvements are
achieved through an iterative analysis (Macaulay, 2012).

26

When it comes to the activity of modeling Rupp (2014) claimes that drafts are helpful for the
development of requirements. More formal, Cardoso, Almeida & Guizzardi (2009) state that
process models which allow a consistent and detailed understanding of a domain have a positive
effect on the specification of business requirements. After the modeled requirements are vali-
dated and verified the process is not finished at this step. Requirements engineering could be
seen as a process by which one only arrives at requirement documents (Macaulay, 2012) but
the change over time should be taken into account by an ongoing requirements management
(Laplante 2013).

A motivation to pay attention to all these requirements engineering activities is that it can reduce
work in later phases, improve software qualities (Laplante, 2013) and independent from the
development process it was found to be of high importance to the project success (Rupp, 2014).
Laplante (2013) cites various studies that show that more effort should be put in requirements
engineering which aligns with Fernandez and Wagner (2013) and the Standish Group (2004)
who found that incomplete, inconsistent and overall poor requirements still are a major problem
for software projects.

3.1.2 Domain model

The previous chapter makes clear that requirements engineering involves the assembly of in-
formation about the application domain to specify important non-functional requirements. Soft-
ware systems are tied to their environment and become more closely related to it (Broy, 2013;
Rausch et al., 2013). Therefore, domain models and the comprehensive knowledge they provide
are highly relevant for software and system development (Broy, 2013).

A domain is the business area undergoing analysis (Daoust, 2012) and a domain model is the
representation of all the relevant parts of this domain (Broy, 2013). Items important to the busi-
ness are typically the people, organizations, places, things and events (Daoust, 2012). To repre-
sent these a domain model includes concepts, data types, functions, rules and laws as well as
terminology and ontology rules (Broy, 2013). It identifies fundamental business and application
specific entity types and relationships between them, including business processes. This over-
laps with models of software systems in general. Models consist of notational and descriptive
elements, and their structural and behavioral relationships (Rausch et al., 2013). Consequently,
domain models like other models of software systems need to deal with problems related to
complexity and scale. The trade-off as it is described by Rausch et al. (2013) is between accu-
racy of the results and the complexity of the model. While complex models are hard to analyze,
understand and process, less complex models may be less relevant to the real system (Rausch
et al., 2013). Despite the complexity domain models may reach, it needs to be said that they are
still conceptual and solution independent (Larman, 2012).

Domain models are created during the early phases of the system development, which means
they are an artefact of the requirements engineering like described previously. Model building,
in conformity to the requirements engineering, is the process of capturing the experience and
knowledge of an organization into reusable models (Heidrich, 2013). A class diagram, as one
possibility to depict a domain, shows classes and interdependencies as representation of the real
world structures. The challenge lies in extracting and analyzing the data from the requirements
elicitation in a way to arrive at model conforming to the real world system.

3.1.3 Qualitative data analysis

We already highlighted the importance of qualitative data input for requirements and their cor-
responding domain. Therefore, we now want to outline by which means qualitative data can be
analyzed.

QDA is an umbrella term for various methods that focus on the investigation and analysis of
qualitative data. A wide range of interpretations of the term lead Kuckartz (2014) as well as
Denzin and Lincoln (2011) to state that no common definition for QDA respectively qualitative

27

research can be found. Even the definition of qualitative data is quite diverse. It can include
test, images, audio-recordings, cultural artefacts and many more data sources (Kuckartz, 2014).
Citing Sarker (2007), Chakraborty et al. (2015) point out that qualitative research methods can
be classified as data-centric and data-driven which makes them a good choice for the data-
centric context of requirements engineering and the data-driven system specifications in soft-
ware engineering. Originally, however, QDA is a discipline from the social sciences

It is there that researchers often focus on the data collection and research design, whereas tan-
gible and concrete method descriptions are hard to find (Kuckarz, 2014). Various mixed meth-
ods, which combine qualitative with quantitative research approaches, exist (e.g. Mayring in-
terpretation method (Mayring, 2014)). Our work, however, focuses on requirements elicitation
which is often done via interviews (Brown & Rogich, 2001) and on qualitative evaluations of
named data. In grounded theory the considered data is qualitative and also the analysis method
is qualitative (Kuckartz, 2014) making it a fitting method for our purpose.

3.1.3.1 Grounded theory method

Charmaz (1996) defined grounded theory method as “a logically consistent set of data collec-
tion and analytical procedures aimed to develop a theory”. Although it was developed by Glaser
and Strauss (1967) to examine interactions of humans in a social setting it can also be applied
to gain insights about the interactions between humans and technical elements. This is sup-
ported by descriptions of grounded theory as a broad approach and a means to identify patterns
for conceptual descriptions (Starks & Trinidad, 2007).

The central concept of the grounded theory method is the careful coding of the data (Kuckartz,
2014; Starks & Brown Trinidad, 2007)). Coding means to assign codes to specific phenomena
in the data material. Three types of coding are differentiated: open, axial and selective coding.

Open Coding is a detailed examination of the data, and in parallel creating codes for all relevant
phenomena. To ensure a critical view of the data Charmaz (1996) suggests the analyst to ask
the following questions:

- What process is at issue here?
- Under which conditions does this process develop?
- How does the research participant think feel and act while involved in this process?
- When why and how does this process change?
- What are the consequences of the process?

These questions show that this first conceptualization has a strong focus on behavioral/process
elements which can be used to define domains and software systems.

Axial Coding has a more structural approach. The data is reassembled into groupings based on
relationships and patterns within and among the categories identified in the data.

Selective Coding is described in two ways. One is focusing on theory building, which means
identifying and describing the central phenomenon for theory building (e.g. Starks & Brown
Trinidad, 2007). The other view again focuses on the structure. Chakraborty & Dehlinger (2009)
suggest to construct relationships, including sequence descriptions between the higher order
categories that were identified during axial coding.

In parallel to the coding the analyst can use memos to keep track of issues to be addressed in
the next iteration and to start theory building. After the initial data collection and analysis new
data is collected to fill the gaps and answer open questions. This concept is named theoretical
sampling and is continued until the theory is completed – theoretical saturation is reached.

Although the defined goal of grounded theory analysis is to produce a theory, some analysts
identify patterns only within and between categories which results in conceptual descriptions
(Stark & Brown Trinidad, 2007). This is favorable for building domain models, but one has to

28

be careful to declare that only steps of the grounded theory method are used and no complete
grounded theory approach was conducted (Denzin & Lincoln, 2011).

3.1.4 Metamodels and ontologies

For our purpose of creating models that support the requirements engineering process we de-
signed a metamodel that would structure the output of QDA for the use in models. As Flower
and Edeki (2013) stated formal models are crucial for the modeling process. A metamodel pro-
vides this formality because it unifies the language and the construction process (Clark, Sammut
& Williams, 2008).

Metamodels and ontologies are, in the broadest sense, used to provide guidelines for the con-
struction of (language) systems. In both cases specific elements and their relations are defined.
They are represented in the form of UML classes, which again are arranged in a subclass –
superclass hierarchy as suggested by Noy and McGuiness (2001) and Guizzardi (2007). For
further orientation we used the following definitions:

A metamodel is a description of the languages abstract syntax since it defines
- a set of constructs selected for the purpose of performing a specific set of tasks and
- a set of well-formedness rules for combining these constructs in order to create gram-

matically valid models in the language (Guizzardi, 2007).

An ontology is a theory concerning the kinds of entities and specifically the kinds of abstract
entities that are to be admitted to a language system (Webster Dictionary)

Nissen, Jeusfeld, Jarke, Zemanek and Huber (1996) suggest to use a metamodeling tool to trans-
fer qualitative data input into various parts of requirement documents. They describe that “while
requirement models are abstract representations of an existing or desired real world, metamod-
els are abstract representations of existing or desired requirement models and their interrela-
tionships” (Nissen et al., 1996). During our analysis and evolution of our metamodel we con-
stantly took into account two statements by Schuette and Rotthowe (1998). “A model is com-
plete according to the metamodel if the relationships between the information objects described
in the metamodel are applied in the model itself in the same way”; “A model is consistent with
the metamodel, if the included information objects in the model are completely defined in the
meta model.” Once the abstract syntax is defined additional rules need to be generated to ensure
the right application of the metamodel (e.g. Clark et al., 2008).

29

3.2 Insights on Approach and Procedure
In general, we realized that the coding and modeling should not be done by only one person
due to several resulting bias. On the one hand every person has a specific focus influencing the
analysis. The different perspective and “Weltanschauung” of analysts causes them to choose
different ways of conceptual development (Schuette & Rotthowe, 1998). This became obvious
during the expert interviews which revealed that the ad-hoc model contained more of the tech-
nical elements concerning Inner Source whereas the metamodel-based model contained more
social elements. Had both analysts conducted the coding with their focus, a more complete
representation of the domain would have been possible. The other bias, could also be mitigated
through intercoder agreements and multiple analysts. It is the choice of names and prioritizing
for Categories and Concepts as well as Properties and Relationships.

Another general drawback was the manual transfer of codes into the domain model. One gen-
eralization of Inner Source was missed (12# Infrastructure-based Inner Source) and previously
correctly named codes became incorrect through typing errors.

3.2.1 Scope and detail level

Our decision to stick with a low detail level (e.g. summarizing all aspects which describe pos-
sible benefits of Inner Source and motivations of companies to use Inner Source under the term
“Motivation” instead of naming the single concepts; leaving out detailed process steps) had a
negative impact on two modeling steps. The chosen names given to the codes were not always
self-explanatory and as sub-codes were missing and no glossary was written up due to time
constraints the understanding of some domain model elements was hindered. Furthermore, not
many behavioral aspects could be structured in terms of sequence. This, however, was addi-
tionally influenced by the domain and the given data set.

A general problem of our method we noted during the Inner Source coding is that it is hard to
distinguish between the as-is state and possible to-be states. There are two main approaches
when modeling development processes: Prescriptive modeling defines how development activ-
ities should be done, whereas descriptive modeling defines how development activities are ac-
tually performed in an organization (Becker-Kornstaedt & Belau, 2000). Depending on the pur-
pose of the domain model one should actively decide for one or both states at the beginning of
the modeling process.

3.2.2 Word choice in coding

At the beginning codenames were chosen more strictly to fit classes, attributes or activities but
it became apparent that we could not describe the domain exclusively with such single terms.
For example, “faster development” is a benefit highlighted throughout the sources but as we
thought in attributes the label became “development speed”. Due to that “faster development”
cannot be identified as an essential part of Inner Source when looking at the domain model.
Other constructs proofed difficult as well. Schmitt (2015, 2016) has used phrases containing
more than one concept making it easier to identify sequences and decisions but harder to single
out classes. To explicitly code relations as we did in the “need access”-example (relation be-
tween Stakeholder #16 and Code #44) was not helpful as labeling the participating parties in
the code system would have conflicted with our metamodel.

Although we suggest that codes for structural aspects should contain a noun and codes for dy-
namic aspects should contain a verb we think that an appropriate word choice to balance cap-
turing the concepts and representing them as element of the metamodel will need further eval-
uation.

One strict rule we would implement, if a rule set for word choice is developed, is to choose the
singular form of nouns. As they later represent classes and therefore blueprints for several in-
stances the plural form would be misleading.

30

3.2.3 Handling of different data sources

The data set on Inner Source contained many research papers which forced two decisions. Ab-
stracts, conclusions and suggestions for further research were not coded except new (in-vivo)
codes were introduced. Repetitive explanations without new insights need to be coded as well
to distinguish between more and less relevant codes. The second decision can be scrutinized
because it could be that aspects of high relevance may only be explained by one author while
minor aspects are constantly stated without having a big impact on the domain.

Especially problematic is the handling of literature reviews which involve papers also included
in the data set. Coding aspects in these chapters could also create the wrong impression of
relevance for basic constructs.

If, as in our case, the starting point is not a single source but a data set the order of processing
could have an influence on word choice and some structural aspects. The first iteration of open
and axial coding may bias the overall outcome and hinders replicability. We therefore suggest
to mix authors, type of source and publication year. Additionally, the order of sources should
be changed if a second analysts works on the data set to further reduce bias.

3.2.4 Mapping rules and modeling

In general, the manual modeling is an unnecessary effort as the mapping rules would allow an
automatic transfer. However, we identified one missing concept which we unfortunately could
not test sufficient to include it in the metamodel and rule system. For behavioral models one
would not only need to depict parallel processes/activities but also decisions. By introducing a
condition as attribute in the causes element (e.g. “create patch” causes “commit patch (devel-
oper has commit bid)”; “ask for integration (developer has no commit bid)”) one could model
decisions. Another possibility would be to introduce “Decision” as specialization of Activity
and integrate it in the existing is consequence/causes sequence.

31

3.3 Suggestions for Features and Tool Support
As there are various possibilities to create tool support for our concept the suggestions are just
roughly outlined. We believe that some simple features which could be implemented in existing
CAQDAS like MaxQDA could overcome some of the obstacles named in the previous chapters.

First and foremost, every code needs additional data fields that can be chosen by the user. To
ideally support the process, we suggest these data fields should be set to the elements of the
metamodel as a default. Alterations and additions through the user should be possible. As soon
as these data fields exist automated entries can be created to reduce the work load for the ana-
lyst.

Example 1: Employee is related to Performance Management Cycle
 As soon as the “is related to” data field of “Employee” is filled with “Performance

Management Cycle” the corresponding entry (“Employee”) is created in the “is re-
lated to” data field of “Performance Management Cycle”.

 Additional to creating the entry a pop-up window can ask if the user wants to add a
name to the association.

 If the code which is entered in the “is related to” data field does not exist a warning
is displayed and the user can choose to discard the entry or create the code.

Example 2: text contains the description of a relationship like “feedback is tool based”
 Condition: The objects/classes “Feedback” and “Software tools” already exist.
 Instead of adding a code “feedback is tool based” the user can choose the function

“Add relationship”
 A pop-up window then offers to choose

o starting and end point from a dropdown of existing classes (e.g. “Feedback”,
“Software tools”)

o drop down with available relationship types (e.g. “is related to”)
o an input field for the name of the relationship is activated if it’s an association.

 After saving this input the following entries would be created:
o “is related to” data field of “Feedback”: “Software tools (is based on)”
o “is related to” data field of “Software tools”: “Feedback”

To easily create use cases (via cross referencing Actor-codes and Process-/Activity-codes) and
swimlanes we think that autocoding all appearances of identified roles would be extremely
helpful. If codings could be manipulated via dragging it may also be reasonable to autocode
other repetitive aspects.

If the analyst codes reoccuring sentences or phrases with different codes or if already existing
codes are set up an indication should be displayed. This would help the sorting process during
axial coding (no unintental duplicates that have to be merged).

To help the process of coding an OCR should be included because coding “Images” makes it
harder to write up glossaries and gain a quick overview over codings. Clarity during coding-
would also be improved if the codes in documents with two columns would be displayed on
both sides of the document.

32

3.4 Further Research
One criteria we could not evaluate was the replicability of the domain model. Therefore, we
suggest that two independent analysts set out to model the same domain, with the same access
to data sources or respectively interview partners, and the resulting models are compared for
differences. The same should be done with a setting where two analysts cooperate on the coding
process.

Exploratory research is necessary to include decisions in the metamodel and to identify fitting
word choices for the code systems. Additionally, various cooperation models could be tested.

To further validate the metamodel it should be combined with other modeling languages. It may
be possible to create a more process oriented overview of the domain by transferring the ele-
ments via BPMN.

All further research should re-evaluate the procedure as soon as the tool support is enhanced.

3.5 Expected Benefits
Besides the advancements in the domain models created (consistency, completeness, transpar-
ency and replicability) we expect further benefits along the road. They depend on the outcome
of future research as well as on the implementation of tool support.

The structured approach forces requirements engineers to run an in-depth analysis of the do-
main, its processes and the target system. In traditional requirements engineering, time pressure
or other constraints would typically lead to a superficial analysis, neglecting some important
complex aspects. The deficiencies may only be discovered in late phases where they already
have caused errors. The analysts which went through the coding steps can serve as experts
during the project and may be suitable as product owner in Scrum, member of the core team for
Inner Source development or project manager in traditional development.

Our approach allows sensible access to the source data which can be used as a wiki to support
on-boarding of new team members or retracing discussions and arguments from the beginning
in late phases of the project. The negative aspect of the analyst/expert leaving the team can also
be mitigated as the information basis is easy accessible and decisions can be retraced.

During requirements management the through the code system well-structured data-basis, al-
lows to identify possible contradictions of new requirements or change requests with previous
statements. If rejections or decisions are challenged the drill-down in the data allows to identify
involved parties and their arguments and therefore speeds up resolving the conflict.

33

Appendices

Appendix A: Interview Structure

 Please state your opinion about the following statements in regard to the domain model
presented to you.

 First, please state how much you agree with the statement on a scale from one to seven –
one representing that you fully agree and seven that you fully disagree.

 After this please give reason for your rating.

1. The conceptual schema represents the domain correctly.

2. All the elements in the conceptual schema are relevant for the representation of the domain.

3. The conceptual schema gives a complete representation of the domain.

4. Elements must be added to faithfully represent the domain.

5. The conceptual schema contains redundant elements.

6. The conceptual schema contains contradicting elements.

7. The conceptual schema is a realistic representation of the domain.

8. Overall, I think the conceptual schema would be an improvement to a textual description of the

domain.

9. Overall, I found the conceptual schema useful for understanding the domain.

10. Overall, I think the conceptual schema would improve someone’s performance when under-
standing the domain/my performance in explaining the domain to someone not familiar with it.

34

Appendix B: Domain Model Inner Source (Ad-hoc)

Ad-hoc domain model Inner Source

35

Appendix C: Domain Model Inner Source (Metamodel-based)

Domain model Inner Source (metamodel-based / structural part)

36

Appendix D: Behavioral Models Inner Source

exemplary process “add patch”

exemplary process "create entry"

37

Appendix E: Mapping Rules
Tables E1 and E2 show exemplary codes and their assigned metadata. The column content is
color coded in order to ease readability/transfer of the mapping rules presented in tables E3 and
E4. The rules presented refer to notations of an UML class diagram (Table E3) and an UML
Activity diagram (Table E4). In the pseudocode the following constructs are used:

 “FOR EACH xyz” means that the rules need to be applied to all xyz before the next step
can start.

 Relationship cells can contain more than one value. The values are separated by semi-
colons. “FOR EACH VALUE” refers to the single values in the named cell.

 If something is referred to in quotation marks the content of this field should be inserted
(e.g. classname = “code” -> classname = Distributed Development).

 “GET xyz WHERE code = = abc” to refer to a selection from the code system

 “origin WHERE”/”origin” to select and set the starting point of a relationship/its graph-
ical representation

 “target WHERE”/”target” to select and set the end point of a relationship/its graphical
representation, respectively the process frame a sub-process/activity belongs to.

code Label Aspect
Relationship

is a is part of is related to
Distributed Devel-
opment

Category Object

Open Source Category Object
Distributed Devel-
opment

Volunteering (depends
on)

Volunteering Category Object
Recruiting; Incentive
system

OSS development
practices

Concept Object Open Source

OS license Property Object Open Source

GPL Property Object OS license

Table E1: Examples for codes with metamodel information (part 1)

38

code Label Aspect
Relationship

causes is cons. of performs influences

Community Concept Actor

create wiki;
[…]; Inner
Source Pro-
ject (provides
support)

create entry Property Process create wiki Wiki

error in software oc-
curs

Property Activity identify bug START create wiki

identify bug Property Activity
post to mailing
list

error in software
occurs

 create wiki

post to mailing list Property Activity
identify worka-
round

identify bug create wiki

identify workaround Property Activity
post fix to mail-
ing list; ask for
verifikation

post to mailing
list

 create wiki

post fix to mailing
list

Property Activity verify solution
identify worka-
round

 create wiki

ask for verification Property Activity verify solution
identify worka-
round

 create wiki

verify solution Property Activity

update wiki
with infor-
mation about
fix

ask for verifika-
tion; post fix to
mailing list

 create wiki

update wiki with in-
formation about fix

Property Activity END verify solution create wiki

Table E2: Examples for codes with metamodel information (part 2)

39

Metamodel information of the code Structural domain model
FOR EACH code {

IF Label = = (Category OR Concept) CREATE class
{classname = “code”}

}
FOR EACH code {

IF Label = = (Category OR Concept)
AND is a IS NOT EMPTY

CREATE generalization
{origin WHERE classname = = “code”;
target WHERE classname = = “is a”}

IF Label = = (Category OR Concept)
AND is part of IS NOT EMPTY

CREATE aggregation
{origin WHERE classname = = “code”;
target WHERE classname = = “is part of”}

IF Label = = (Category OR Concept)
AND is related to IS NOT EMPTY

FOR EACH VALUE {CREATE association
{origin WHERE classname = = “code”;
target WHERE classname = = “is related to”;
IF “(name)” EXISTS IN is related to
{associationname = “name”}}}

IF Label = = Property
AND Aspect = = (Object OR Actor OR Place)
AND is related to IS NOT EMPTY

CREATE attribute
{target WHERE classname = = “is related to”;
propertyname = “code”}

IF Label = = Property
AND is a IS NOT EMPTY

CREATE value FOR attribute
{target WHERE classname = = “is a”;
valuename = “code”}

IF Label = = Property
AND Aspect = = (Activity OR Process)
AND influences IS NOT EMPTY

CREATE method
{target WHERE classname = = “influences”;
methodname = “code”}

IF Label = = (Category OR Concept)
AND Aspect = = Actor
AND performs IS NOT EMPTY

FOR EACH VALUE {
GET Label WHERE code = = “performs”
IF Label = = Property
{DO NOTHING}
ELSE {CREATE association
{origin WHERE classname = = “code”;
target WHERE classname = = “performs”;
IF “(name)” EXISTS IN performs
{associationname = “name”}
ELSE {associationname = performs}}}}

}

Table E3: Mapping rules - structural model

40

Metamodel information of the code Behavioral domain model
FOR EACH code {

IF Aspect = = Activity CREATE activity
{activityname = “code”}

IF Aspect = = Process CREATE process
{processname = “code”}

}
FOR EACH process {
GET “influences” AS targetprocess WHERE code = = processname;
GET Aspect AS targetaspect WHERE code = = targetprocess;
GET “code” AS actorname WHERE processname IN “performs”;

IF ((influences IS EMPTY)
 OR targetaspect = = (Object OR Actor OR
 Place))
AND actorname EXISTS

CREATE swimlane
{target = = process;
swimlanename = actorname}

IF targetaspect = = Process
AND actorname EXISTS

IF swimlanename = = actorname EXISTS IN tar-
getprocess
{MOVE process INTO swimlane}
ELSE {{CREATE swimlane
{target WHERE processname = = targetprocess;
swimlanename = actorname}}
{MOVE process INTO swimlane}}

IF targetaspect = = Process
AND actorname NOT EXISTS

{MOVE process INTO targetprocess}

}
FOR EACH activity {
GET “influences” AS targetprocess WHERE code = = activityname;
GET Aspect AS targetaspect WHERE code = = targetprocess;
GET “code” AS actorname WHERE activityname IN “performs”;

IF targetaspect = = Process
AND actorname EXISTS

IF swimlanename = = actorname EXISTS IN tar-
getprocess
{MOVE activity INTO swimlane}
ELSE {{CREATE swimlane
{target WHERE processname = = targetprocess;
Swimlanename = actorname}}
{MOVE activity INTO swimlane}}

IF targetaspect = = Process
AND actorname NOT EXISTS

{MOVE activity INTO targetprocess}

…

41

Metamodel information of the code Behavioral domain model
}
FOR EACH process {
COUNT VALUES of is consequence of AS incoming WHERE code = = processname;
COUNT VALUES of causes AS outgoing WHERE code = = processname;

IF is consequence of = = START CREATE startnode;
CREATE transition
{origin = = startnode; target = = process}

IF incoming = = 1 CREATE transition
{origin = = WHERE processname = = is conse-
quence of; target = = process}

IF incoming > 1 CREATE merge
{FOR EACH {CREATE transition
{origin = = “is consequence of”;
target = = merge}};
CREATE transition
{origin = = merge; target = = process}

IF causes = = END CREATE endnode;
CREATE transition
{origin = = process; target = = endnode}

IF outgoing = = 1 CREATE transition
{origin = = process;
target WHERE processname = = “causes”}

IF outgoing > 1 CREATE fork
{FOR EACH {CREATE transition
{origin = = fork;
target WHERE processname = = “causes”}};
CREATE transition
{origin = = process; target = = fork}

}
FOR EACH activity {
// see process: exchange processname with activityname
}
ERASE DUPLICATES;

Table E4: Mapping rules - behavioral model

42

References

Agarwal, R., & Tanniru, M. R. (1990). Knowledge acquisition using structured interviewing:
an empirical investigation. Journal of Management Information Systems, 7(1), 123-140.

Becker, J. (2 011). Information Models for Process Management–New Approaches to Old
Challenges. In Emerging Themes in Information Systems and Organization Studies (pp. 145-
154). Physica-Verlag HD.

Becker-Kornstaedt, U., & Belau, W. (2000). Descriptive process modeling in an industrial en-
vironment: Experience and guidelines. In European Workshop on Software Process Technol-
ogy (pp. 176-189). Springer Berlin Heidelberg.

Binder, M., & Edwards, J. S. (2010). Using grounded theory method for theory building in
operations management research: A study on inter-firm relationship governance. International
Journal of Operations & Production Management, 30(3), 232-259.

Browne, G. J., & Rogich, M. B. (2001). An empirical investigation of user requirements elici-
tation: Comparing the effectiveness of prompting techniques. Journal of Management Infor-
mation Systems, 17(4), 223-249.

Broy, M. (2013). Domain Modeling and Domain Engineering: Key Tasks in Requirements
Engineering. In Perspectives on the Future of Software Engineering (pp. 15-30). Springer
Berlin Heidelberg.

Cardoso, E. C., Almeida, J. P. A., & Guizzardi, G. (2009). Requirements engineering based
on business process models: A case study. In EDOCW (pp. 320-327).

Carvalho, L., Scott, L., & Jeffery, R. (2005). An exploratory study into the use of qualitative
research methods in descriptive process modelling. Information and Software Technology,
47(2), 113-127.

Chakraborty, S., & Dehlinger, J. (2009). Applying the grounded theory method to derive en-
terprise system requirements. In Software Engineering, Artificial Intelligences, Networking
and Parallel/Distributed Computing, 10th ACIS International Conference on (pp. 333-338).
IEEE.

Chakraborty, S., Rosenkranz, C., & Dehlinger, J. (2015). Getting to the shalls: Facilitating
sensemaking in requirements engineering. ACM Transactions on Management Information
Systems (TMIS), 5(3), 14.

Charmaz, K. (1996). The search for Meanings – Grounded Theory. In Rethinking Methods in
Psychology. (pp. 27-48). London: Sage Publications.

Cherfi, S. S. S., Akoka, J., & Comyn-Wattiau, I. (2002). Conceptual modeling quality-from
EER to UML schemas evaluation. In International Conference on Conceptual Modeling (pp.
414-428). Springer Berlin Heidelberg.

Chung, L., Nixon, B. A., Yu, E., & Mylopoulos, J. (2012). Non-functional requirements in
software engineering (Vol. 5). Springer Science & Business Media.

43

Clark, T., Sammut, P., & Willans, J. (2008). Applied metamodelling: a foundation for
language driven development.

Coleman, G., & O’Connor, R. (2007). Using grounded theory to understand software process
improvement: A study of Irish software product companies. Information and Software
Technology, 49(6), 654-667.

Corbin, J. M., & Strauss, A. (1990). Grounded theory research: Procedures, canons, and eval-
uative criteria. Qualitative sociology, 13(1), 3-21.

Daoust, N. (2012). UML Requirements Modeling for Business Analysts: Steps to Modeling
Success. Technics Publications.

Davison, R., Martinsons, M. G., & Kock, N. (2004). Principles of canonical action research.
Information systems journal, 14(1), 65-86.

Denzin, N. K., & Lincoln, Y. S. (2011). The SAGE handbook of qualitative research. Sage.

De Oca, I. M. M., Snoeck, M., Reijers, H. A., & Rodríguez-Morffi, A. (2014). A systematic
literature review of studies on business process modeling quality. Information and Software
Technology, 58, 187-205.

Doerr, J. (2013). Modeling Complex Information Systems. In J. Münch & K. Schmid (eds.),
Perspectives on the Future of Software Engineering (pp. 95-10). Berlin Heidelberg: Springer
Verlag

Dorussen, H., Lenz, H., & Blavoukos, S. (2005). Assessing the reliability and validity of ex-
pert interviews. European Union Politics, 6(3), 315-337.

Easterbrook, S., Singer, J., Storey, M. A., & Damian, D. (2008). Selecting empirical methods
for software engineering research. In Guide to advanced empirical software engineering (pp.
285-311). Springer London.

Fernandez, W. D., & Lehmann, H. (2011). Case studies and grounded theory method in infor-
mation systems research: issues and use. Journal of Information Technology Case and Appli-
cation Research, 13(1), 4-15.

Fernandez, D. M., & Wagner, S. (2013). Naming the Pain in Requirements Engineering–Na-
PiRE Report 2013. Technical Report TUM-I1326, Technische Universität München.

Flowers, R., & Edeki, C. (2013). Business process modeling notation. International Journal
of Computer Science and Mobile Computing, 2(3), 35-40.

Geambasu, C. V. (2012). BPMN vs. UML Activity Diagram for business process modeling.
Accounting and Management Information Systems, 11(4), 637.

Glaser, B. G., & Strauss, A. L. (1999). The discovery of grounded theory: Strategies for qualita-
tive research. New York: Aldine de Gruyter.

Green, P., & Rosemann, M. (2000). Integrated process modeling: an ontological evaluation.
Information systems, 25(2), 73-87.

44

Heidrich, J. (2013). Continuous Process Improvement. In J. Münch & K. Schmid (eds.), Per-
spectives on the Future of Software Engineering (pp. 111-129). Berlin Heidelberg: Springer
Verlag

Indulska, M., Recker, J., Rosemann, M., & Green, P. (2009). Business process modeling:
Current issues and future challenges. In International Conference on Advanced Information
Systems Engineering (pp. 501-514). Springer Berlin Heidelberg.

Kaufmann, A., & Riehle, D. (2015). Improving Traceability of Requirements Through Quali-
tative Data Analysis. In Software Engineering & Management (pp. 165-170).

Kuckartz, U. (2014). Qualitative text analysis: A guide to methods, practice and using soft-
ware. Sage.

Kunz, K. (2015), Developing a Domain Analysis Procedure based on Grounded Theory
Method. Master's thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg. Retrieved 15
May 2016 from http://osr.cs.fau.de/wpcontent/uploads/2015/06/kunz 2015 arbeit.pdf

Laplante, P. A. (2013). Requirements engineering for software and systems. CRC Press.

Larman, C. (2012). Applying UML and Patterns: An Introduction to Object Oriented Analysis
and Design and Interactive Development. Pearson Education India.

Leung, F., & Bolloju, N. (2005). Analyzing the quality of domain models developed by nov-
ice systems analysts. In Proceedings of the 38th annual Hawaii international conference on
system sciences (pp. 188b-188b). IEEE.

List, B., & Korherr, B. (2006). An evaluation of conceptual business process modelling lan-
guages. In Proceedings of the 2006 ACM symposium on Applied computing. ACM. 1532-
1539.

Locke, K. (2001). Grounded theory in management research. Sage.

Macaulay, L. A. (2012). Requirements engineering. Springer Science & Business Media.

Mayring, P. (2014). Qualitative content analysis: theoretical foundation, basic procedures and
software solution.

McGraw, K. L. (1989). Knowledge acquisition: principles and guidelines (No. QA76. 76.
E95 M61).

Milisterfer, O. (2016), Comparing domain models developed with a grounded
theory-based method and ad-hoc modeling. Studienarbeit, Friedrich-Alexander-Universität
Erlangen-Nürnberg.

Moody, D. L. (2005). Theoretical and practical issues in evaluating the quality of conceptual
models: current state and future directions. Data & Knowledge Engineering, 55(3), 243-276.

Nissen, H. W., Jeusfeld, M. A., Jarke, M., Zemanek, G. V., & Huber, H. (1996). Managing
multiple requirements perspectives with metamodels. IEEE Software, 13(2), 37.

45

OMG (2005). Documents associated with UML® Version 2.0. Retrieved from
http://www.omg.org/spec/UML/2.0/

Panayiotou, N. A., Gayialis, S. P., Evangelopoulos, N. P., & Katimertzoglou, P. K. (2015). A
business process modeling-enabled requirements engineering framework for ERP implemen-
tation. Business Process Management Journal, 21(3), 628-664.

Poels, G., Maes, A., Gailly, F., & Paemeleire, R. (2005). Measuring the perceived semantic
quality of information models. In International Conference on Conceptual Modeling (pp. 376-
385). Springer Berlin Heidelberg.

Rausch, A., Bartelt, C., Herold, S., Klus, H., & Niebuhr, D. (2013). From software systems to
complex software ecosystems: model-and constraint-based engineering of ecosystems. In Per-
spectives on the Future of Software Engineering. (pp. 61-80). Springer Berlin Heidelberg.

Robertson, S., & Robertson, J. (2012). Mastering the requirements process: Getting require-
ments right. Addison-Wesley.

Rupp, C. (2014). Requirements-Engineering und-Management: Aus der Praxis von klassisch
bis agil. Carl Hanser Verlag GmbH Co KG.

Salow, S. (2016). Using qualitative data analysis for business process modeling.
Studienarbeit, Friedrich-Alexander-Universität Erlangen-Nürnberg.

Sarker, S. (2007). Qualitative research genres in the is literature: Emerging issues and poten-
tial implications. In Proceedings of the 40th Annual Hawaii International Conference on Sys-
tem Sciences.

Schmitt, F. (2015). Improving Domain Modeling And Requirements Analysis Using Grounded
Theory. Studienarbeit, Friedrich-Alexander-Universität Erlangen-Nürnberg. Retrieved 15 May
2016 from https://osr.cs.fau.de/wp-content/uploads/2015/06/schmitt_2015_arbeit.pdf

Schmitt, F. (2016). Integrating Multiple Views In A Code System. Diplomarbeit, Friedrich-
Alexander-Universität Erlangen-Nürnberg. Retrieved 15 May 2016 from https://osr.cs.fau.de/
wp-content/uploads/2016/02/schmitt_2016_arbeit.pdf

Schuette, R., & Rotthowe, T. (1998). The guidelines of modeling–an approach to enhance the
quality in information models. In International Conference on Conceptual Modeling (pp. 240-
254). Springer Berlin Heidelberg.

Seidl, M., Scholz, M., Huemer, C., & Kappel, G. (2015). UML@ classroom: An introduction
to object-oriented modeling. Springer.

Standish, The Standish Group International, Inc. (2004), Third Quarter Research Report,
West Yarmouth, MA.

Starks, H., & Brown Trinidad, S. B. (2007). Choose your method: A comparison of
phenomenology, discourse analysis, and grounded theory. Qualitative health research, 17(10),
1372-1380.

Webster Dictionary. Retrieved 16 September 2016 from http://www.webster-
dictionary.org/definition/Ontology

46

Wiegers, K., & Beatty, J. (2013). Software requirements. Pearson Education.

Van Der Aalst, W. M., Ter Hofstede, A. H., & Weske, M. (2003). Business process manage-
ment: A survey. In International conference on business process management (pp. 1-12).
Springer Berlin Heidelberg.

